
Untested C++ Considered Harmful

Markus Lohmayer

Abstract

After a motivation of software testing in section 1, both from the per-
spective of science and engineering, a short overview of different types
of testingmethods is given in section 2. In section 3 the use of unit testing
frameworks ismotivated, followedby an outline of their basic structure in
section 4. The C++ software library Catch2 is introduced as an example
in section 5. The ideas behind Test Driven Development and Behavior
Driven Development are briefly presented in section 6 and section 7, re-
spectively. Section 8 deals with the question of how to write testable
code. An emphasis is put on synergies with other goals of software en-
gineering.

1. Motivation: Why do we need Software Testing?

1.1. Software Testing in the name of Science
The scientific method demands that rigorous tests are carried out to en-
sure that scientists actually measure what they seek to measure in a spe-
cific experiment. In computational science, the computer is the experi-
mental apparatus and the algorithms running on it represent the meth-
ods used for conducting the experiment. Analogously, computational
scientists need to design software tests which ensure that they are com-
puting what they seek to compute in a specific computational experi-
ment. Hence, one may say that software tests are an essential ingredient
of the scientific method in the 21st century.

Automated tests not only lead to an increased level of confidence in the
correctness of computational results. They also help to overcome today’s
reproducibility crisis (cf. fig. 1), given that scientists publish their source
code (including the automated tests). Hopefully the spirit of open-source
software development will soon carry over to the computational science

1

Figure 1: opinions of scientists on the current state of reproducibility [1]

community at large. If scientists invest sufficient time on improving code
quality and increasing test coverage, it becomes much more likely that
their work is reused and built upon (by other scientists) later on. Incen-
tives to support suchbehavior should not bemissing, since the long-term
impact of scholarly work is paramount. The Journal of Open Source Soft-
ware (JOSS) is a relatively young (* May 2016) project that shares exactly
these goals.

1.2. Software Testing in the Name of Engineering
Automated tests are supposed to help programmers catch mistakes ear-
lier in the development process. Hence, less time is probably spent on
debugging and more time is spent on writing (test) code. Overall, an
improved level of productivity should be the result, especially when the
tests themselves are considered as a valuable by-product.

Beyond correctness, writing test code during the development process
has other positive effects. In particular the following code qualities are

2

https://joss.theoj.org
https://joss.theoj.org

expected to improve: Understandability, maintainability, flexibility and
reusability. The overarching theme is a reduction of code dependencies.

2. Overview of Software Testing Methods

2.1. Static Methods
All testing methods that do not execute code are termed static. Code
reviews and various kinds of static analysis tools belong to this category.
Such tools can for example detect logical errors, syntax errors and for-
matting errors. As an example, the C++ linter tool clang-tidy may be
mentioned.

2.2. Dynamic Methods
Dynamic testing methods on the other hand do execute code. These
methods may be grouped into the categories on the following (non-
exhaustive) list:

• Functional Tests

– Sanity Tests

– Unit Tests

– Integration Tests

– System Tests

– others: Regression Tests, Smoke Tests, Installation Tests

• Non-functional Tests

– Performance Tests, Usability Tests, Security Tests

In the sequel of this section the basic idea behind some of these terms
shall be explained. The treatment here does not adhere to any existing
standards.

Sanity Tests encode assumptions upon which the implementation of a
certain function relies. These tests are interwoven with the code of the
respective implementation. An example will be given at the beginning
of the next section.

3

http://clang.llvm.org/extra/clang-tidy

Unit Tests try to ensure the correct functioning of classes or free functions
in isolation of other parts of the code base. These tests are small sepa-
rate programs that each exercise and verify one specific aspect of the
unit of code (class or free function) to which they pertain. Usually many
short tests are necessary to ensure correctness of a specific unit of code.
Therefore these tests are supposed to run fast. Input-output operations
are hence usually avoided.

Integration Tests check the interoperability of different units of code. These
tests are usually a bit more difficult to write.

System Tests verify if the entire system works together for a specific use
case. Choosing an appropriate correctness measure is often not trivial.

Regression Tests are written whenever a bug is found. They pass once
the bug is fixed and make sure that it doesn’t creep back into the system
later.

3. Why do we want to use a Testing Framework?

3.1. Sanity Tests
Sanity Tests are themost simple kindof tests, in the sense that they arenot
separate programs that exercise and verify certain aspects of the appli-
cation. They are merely assertions interwoven with the application code.
These assertions can be used to rule out obviously false results.

Example: function to compute a Rayleigh coefficient

#include <cassert>

float rayleigh_coefficient(Matrix A, Vector v)
{

assert(
A.shape[0] == A.shape[1] and
A.shape[1] == v.shape[0]

);
return inner(v, inner(A, v)) / inner(v, v);

}

4

Sanity Tests are particularly useful for expressing the (otherwise implicit)
assumptions on which a certain implementation rests upon. In that way
they also serve as (additional) documentation. One advantage of asser-
tions over exceptions is that they can be deactivated at compile time (by
the -DNDEBUG compiler flag) in order to regain full performance.

3.2. Mere assertions are certainly not enough!
Consider the output of the above function, in case of failure:
Assertion failed: (A.shape[0] == A.shape[1] and
A.shape[1] == v.shape[0]), function
rayleigh_coefficient, file foo.cpp, line 6.

One major drawback of using the standard assertmacro from C is that
it does not report the values of LHS and RHS in e.g. assert(LHS ==
RHS).

Beyond generating informative output for failures, a testing framework
should support the following features:

• automated test discovery

• readable summary of all individual test results

• organization of tests (e.g. tags or test suites)

• sharing common setup code among different tests (e.g. fixtures)

• interoperability with continuous integration services

4. Architecture of xUnit Frameworks

The concept of a Testing Framework was introduced by Kent Beck. In
1989 he described SUnit for the Smalltalk programming language in an
article [2]. Today many descendants exist: JUnit (for Java), CppUnit,
Google Test (also for C++), unittest (for Python), pFUnit (for Fortran), …

These tools all share very similar architectural elements:

• Test Case: class that defines one particular test

5

• Test Runner: executable that finds and executes tests and reports
results

• Test Fixture: class that defines setup (and teardown) code that can
be used across multiple test cases

• Test Suite: class that groups together multiple test cases (which
probably share one or more fixtures)

4.1. Structure of a Test Case
The structure of a test case is outlined in fig. 2. The System Under Test
(SUT) is either a class or a free function which should be tested in some
specific way. Various collaborators, i.e. instances of classes, may be nec-
essary to run the test. These are termed the Dependent Other Compo-
nents (DOCs). The work of instantiating one or multiple DOCs may be
encapsulated by a fixture, which can then be used across multiple test
cases, to avoid code duplication. In C++ teardown code should never
be necessary because code should conform to the Resource Acquisition
Is Initialization (RAII) principle.

Figure 2: structure of a test case (cf. [7])

4.2. Test Doubles
If TheDOCs themselves dependonotherDOCs then itmaybenecessary
to cut this possibly long chain of dependencies by introducing so-called

6

Test Doubles as DOCs. These are essentially objects specifically created
for the purpose of testing, that are sufficiently similar to the actual DOCs
but do themselves not depend on further DOCs.

There exist three different types of Test Doubles:

• Fake: a variant of the original DOC that has limited capabilities (e.g.
a in-memory database instead of I/O and persistent storage)

• Stub: a replacement for theDOC that provides only fewpredefined
answers to certain function calls required by the tests

• Mock: an object which holds and automatically verifies certain ex-
pectations.

Mocks are probably a bit harder to conceptualize. They essentially verify
the behavior of the SUT w.r.t. the mocked DOC by encoding for instance
a sequence of expected calls from the SUT to themockedDOC. Software
libraries (so-called mocking frameworks) exist to conveniently generate
such objects. [4]

These definitions do not adhere to any (possibly existing) standard.

5. Introduction to a C++ Unit Testing Framework

This sectiongives a short introduction to theC++ testing frameworkCatch2.
The software library features a declarative style for writing tests using
macros. Per se, the use of macros is by no means beautiful but never-
theless a good solution for the problem at hand, given the absence of
reflection capabilities in C++. It shall be mentioned here that Catch2 de-
viates a bit from the traditional xUnit style of writing tests.

Example: interface of the SUT (trapezoidal integrator)

#include <functional>

double trapz(
std::function<double(double)> const & function,
float lower_limit, float upper_limit, unsigned int bins

);

7

http://catch-lib.net

A test case implemented in Catch2 may take the following form:

#define CATCH_CONFIG_MAIN
#include "catch.hpp"
#include "trapz.h"
#include <cmath>

TEST_CASE(
"test trapz with derivative of atan function",
"[integrators]"

)
{

auto derivative = [](double x){ return 1 / (1 + x*x); };
auto result = trapz(derivative, 0, 5, 500);
REQUIRE(
result == Approx(std::atan(5)).epsilon(1e-4)

);
}

The first line tells Catch2 to generate a main function, that serves as the
test runner. As can be seen in the second line, a single header file suf-
fices for using the library.

The first string after the TEST_CASE macro names the test case and the
second string can be used to specify tags, which can then be used to se-
lectively run tests that have certain tags. Tag names are always enclosed
in square brackets. If one of the tags is [!hide] then the test is not ex-
ecuted by default. To run the test either its name or one of its tags must
be specified as a command line argument of the test executable.

Two different macros are available to write assertions: REQUIRE stops
execution of the test case after the first failure, whereas CHECK keeps the
test case running. Specific assertion commands for different comparison
operators are not required.

There exist various command line options when running the generated
test executable: e.g. -s shows output also for successful tests. -l shows

8

all available tests and -t shows all available tags. A complete list of op-
tions is displayed when the -h flag is used.

The above example comprises only of one single test case. In general a
file can contain multiple test cases and each test case may have several
nested sections.

Instead of relying on traditional class-based fixtures, nested sections are
the preferred way to reuse setup code in Catch2. Sections carry a name
just like test cases, but they do not carry tags. Code at the test-case level
is executed once for each nested section. Section 7 shows a related ex-
ample.

Remark: If aTEST_CASEblock hasmultiple nestedSECTIONblocks then,
in terms of the xUnit nomenclature, each SECTION block corresponds to
a test case and the outer TEST_CASE block corresponds to a test suite
that groups those test cases.

6. Test Driven Development

The main idea of Test Driven Development (TDD) is to always write unit
tests before writing the corresponding application code. The resulting
development cycle is outlined in fig. 3.

TDD leads to the following benefits:

• the process of writing tests drives the design of the application
code in a positive way

• ideally all requirements / specifications are captured by tests

• rumors exist that the TDD cycle leads to improved productivity

Note however that an abundance of unit tests can lead to a false sense of
security in particular if no or very few integration- and system-level tests
are in place.

If tests are written first, then clearly testable code must be the result of
the development process. The meaning behind the first item above will

9

Figure 3: TDD development cycle (cf. [5])

become clear in section 8, which discusses synergies between testability
and other desirable code qualities.

Take-away message: TDD must not be practiced religiously but always
writing a good number of unit tests for every new unit of code before
consuming its API elsewhere makes perfect sense! This way lots of prob-
lems that stem from avoidable code dependencies can be solved early
in the development process when making changes is cheap.

7. Behavior Driven Development

The idea of Behavior Driven Development (BDD), as conceived by Dan
North [9], is that tests might as well be thought of as executable specifi-
cations of program behavior.

Catch2offers fourmacros to support this style ofwriting tests: SCENARIO,
GIVEN, WHEN and THEN are used instead of TEST_CASE and SECTION.

A BDD-style test case then takes on the following form:

10

SCENARIO("some name for the test", "[tag1][tag2]")
{

GIVEN("some preconditions")
{

/* setup something here ; note that this "fixture"
is executed once before each WHEN block */

REQUIRE(/* maybe check if preconditions are met */);

WHEN("something is done")
{

/* exercise the SUT in some way here */

THEN("some result is expected")
{

REQUIRE(/* verify */);
}

}
WHEN("something else is done")
{

/* exercise the SUT in some other way here */

THEN("another result is expected")
{

REQUIRE(/* verify */);
}

}
}

}

8. Writing Testable Code

8.1. Preliminary Overview of some Terminology
Low Couplingmeans that different units of code are largely independent
of each other. In particular no forced dependencies exist, whichmakes it
possible to replace one implementation of a component by another one.

11

High Cohesion means that elements within one unit of code belong to-
gether strongly. For example if some data members are accessed only
by relatively few member functions then that class lacks cohesion.

The Single Responsibility Principle (SRP) dictates that one unit of code
should focus only on a single concern [6]. It is the “S” in the SOLID de-
sign principles. Big units of code probably violate this principle.

TheSingle Level of Abstraction Principle (SLAP) commands that codeop-
erating on different levels of abstraction should not be mixed within one
unit of code [6]. If this principle is violated then understanding the code
requires mental (re-)construction of the abstractions that were not made
explicit.

The Law of Demeter suggests that a class should communicate only with
its direct dependencies. Formal statement:
Object O has member function m, then m only invokes:

• other member functions of O

• public member functions of data members of O

• member functions of objects that are passed as parameters of m

• functions on local objects created within m

Trainwrecks likefunction_argument.getX().getY().doZ() violate
this principle. [6]

Dependency Injection (DI) means that the responsibilities of using and
constructing an object as a DOC are separated [6]. If a class C depends
on another class D then D is not constructed by C but by another object
dedicated to the task of object construction. This object then passes a
reference to the instance of D as an argument when calling the construc-
tor of C.

8.2. Seams
In his book “Working Effectively with Legacy Code” Michael Feathers
coined the term “code seam”: “A seam is a place where you can alter

12

behavior in your program without editing in that place.” [3]

Modern and easily testable code has seams (i.e. test-enabling points)
all over the place. Low coupling and high composability make it easy
to replace components with test doubles. On the contrary, legacy code
usually comes without any tests and it can be quite hard to find or intro-
duce seams. A major topic of the aforementioned book is the question
of how to create such test-enabling points in a legacy codebase. If cer-
tain dependencies are removed (i.e. seams are introduced) by making
some small and hopefully safe modifications, tests can be written for the
respective unit of code. Once enough tests are in place, larger modifi-
cations of the legacy system can be carried out with much higher confi-
dence and even refactoring the codebase might become a reasonable
goal.

Dependency Injection is the way how seams are naturally created. For
legacy code on the other hand less straightforward techniquesmight un-
fortunately be necessary to introduce seams:

• Extract Interface Refactoring: based on dynamic polymorphism;
causes virtual-function-lookup overhead

• Compile / Template Seam: extract a template parameter, with the
original DOC as the default template parameter

• Link Seam: mainly used for replacing libraries with test doubles

• Preprocessor Seam

8.3. Lean Constructors
In the worst case a class instantiates its collaborators (DOCs) in its con-
structor. This leads to a deceptive API and forced dependencies, which
is detrimental to understandability, testability, composability, flexibility
and reusability.
Instantiating objects (either as SUT or DOC) is an ubiquitous task in test-
ing. Therefore constructors should not do any work beyond assigning all
injected dependencies to their respective fields (cf. SRP and DI). If any
extra work is done, then chances are high that this work is unnecessary
for the execution of most tests, leading to high overhead and thus slow

13

tests. If doing this work entails further dependencies then the situation
gets even worse in terms of execution speed and also writing test code
becomes unnecessarily complicated.

8.4. Lean Functions and Classes
Not only constructors but all units of code should adhere to the SRP and
SLAP. If these principles are violated then

• important interactions are hidden inside a unit of code

• important seams for testing are missing

• the code becomes less easy to understand by just looking at the
class definitions / function signatures, which reducesdeveloper pro-
ductivity

• code flexibility and reusability are severely limited because of lack-
ing composability

Splitting code into many composable functions does not necessarily in-
cur a performance penalty. In many cases the compiler will use function
inlining and thus no function-call overhead will result. Having small units
of code might also help the compiler to better optimize the code. Last
but not least, it should be pointed out that usually only very few hotspots
in the overall codebase are performance critical. The computer scientist
Donald Knuth once said: “The real problem is that programmers have
spent far too much time worrying about efficiency in the wrong places
and at the wrong times; premature optimization is the root of all evil in
programming”. Achieving low coupling usually is a much higher goal
than minimizing function-call overhead.

When encapsulating functionality developers often have the choice be-
tween a free function and a member function. Free functions should al-
ways be preferred because they lead to less coupling and more flexible
code. If a function does not need access to private data members then
it should not have it. Member functions implicitly demand a valid this
pointer. Requiring this as an unused argument might severely limit the
achievable performance.
Good object-oriented design means to optimize for high cohesion, i.e.

14

to implement a minimal set of member functions which can efficiently
perform all required operations on the data members. The purpose of a
class is not to group together code but to achieve encapsulation of data
only.

8.5. Object Graph Construction
It has been pointed out already, that all collaborators (DOCs) of a class
must be passed as constructor arguments (DI). Thismakes code compos-
able and dependencies become explicit through the API. It also makes
code testable because certain DOCs can be replaced by test doubles.
This is necessary if a DOC would cause too much overhead for a test or
if a DOC depends on too many (transitive) DOCs and thus instantiation
of a large object graph would be required to run a single test.

There exist three kinds of classes (and responsibilities):

• Service Objects (application logic)

• Value Objects (non-primitive data types)

• Factories, Builders, …(object graph construction)

Service Objects require references to all their collaborators as construc-
tor arguments and do no instantiate other service objects themselves.

Value Objects encapsulate data and contain no application logic. They
are instantiated in-linewith application logic (just likeprimitivedata types).

Factories, Builders, … are special objects for instantiating and wiring up
a group of service objects. More information on so-called creational de-
sign patterns can be found in [8]. Objects responsible for object graph
creationmust not necessarily followanyparticular designpattern like e.g.
the factory pattern.
Highermodularity and composabilitymeans endingupwithmany smaller
objects that use DI. This goes hand in hand with an increased need for
wiring things up again. An interesting solution to save on boilerplate
code is to use a DI framework such as [Boost].DI to inject dependencies.

15

http://boost-experimental.github.io/di/

8.6. Global State
Singletons and global variables lead to various adverse effects:

• singletons are forced dependencies and cannot be replaced by
test doubles

• lower flexibility and reusability

• bad understandability and thus also maintainability

• no (safe) parallel execution of tests

• execution order of tests may matter

Note that singletons and all their internals (internals (internals (…))) are
global state, i.e. global state is transitive in this sense.

In few cases global state may be acceptable, in particular if

• it is is an immutable object

• it is a primitive variable

• information flows only in one direction (e.g. in case of a logger)

8.7. Law of Demeter
The Law of Demeter, which should just be called the Guideline of Deme-
ter, suggests that functions should ask exactly for what they need. De-
pendency Injection should not happen via any intermediary objects, as
this would unnecessarily increase the coupling of components.

Example: Incomplete logging component

class Logger
{

private:
LogLevel level;

public:
Logger()
: level(app_configuration_singleton.getLogLevel()) {}

16

Logger(AppConfigurationDatabase app_config_db)
: level(app_config_db.getLogLevel()) {}

Logger(LogLevel level)
: level(level) {}

};

The first constructor relies on global state and is therefore a very bad
choice. The second try is better because it leads to weaker coupling.
The third constructor is the best choice because it directly asks for what
it needs and thus leads to minimal dependencies between the logging
component and the rest of the codebase.
A common exception to the Guideline of Demeter are domain specific
languages (DSLs). For examples consider the fluent builder pattern [8]
or the DSL used by [Boost].DI.

8.8. Design for Testability and Synergies
Summing up, testable code

• is modular

• is highly composable

• has low coupling and high cohesion

• does not make unnecessary assumptions on how the code is used

• is more flexible

• has much higher chances to be reused

• does not have a deceptive API

• leads to increased productivity

• is easier to maintain

17

http://boost-experimental.github.io/di/tutorial/index.html

References

[1] M. Baker, 1,500 scientists lift the lid on Reproducibility.
https://www.nature.com/news/
1-500-scientists-lift-the-lid-on-reproducibility-1.
19970, 2016.

[2] K. Beck, Simple Smalltalk Testing: With patterns.
http://swing.fit.cvut.cz/projects/stx/doc/online/
english/tools/misc/testfram.htm, 1989.

[3] M. Feathers,Working Effectively with Legacy Code, Prentice Hall,
2004.

[4] M. Fowler,Mocks aren’t Stubs. https:
//martinfowler.com/articles/mocksArentStubs.html,
2007.

[5] J. Langr,Modern C++ Programming with Test-Driven Development:
Code Better, Sleep Better, O’Reilly UK Ltd, 2013.

[6] R. C. Martin, Clean Code: A Handbook of Agile Software
Craftsmanship, Prentice Hall PTR, Upper Saddle River, NJ, USA,
1 ed., 2008.

[7] G. Meszaros, xUnit Test Patterns: Refactoring Test Code, Addison
Wesley, 2007.

[8] D. Nesteruk, Design Patterns in Modern C++: Reusable Approaches
for Object-Oriented Software Design, Apress, 2018.

[9] D. North, Introducing BDD.
https://dannorth.net/introducing-bdd/, 2006.

18

https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
https://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
http://swing.fit.cvut.cz/projects/stx/doc/online/english/tools/misc/testfram.htm
http://swing.fit.cvut.cz/projects/stx/doc/online/english/tools/misc/testfram.htm
https://martinfowler.com/articles/mocksArentStubs.html
https://martinfowler.com/articles/mocksArentStubs.html
https://dannorth.net/introducing-bdd/

	Motivation: Why do we need Software Testing?
	Software Testing in the name of Science
	Software Testing in the Name of Engineering

	Overview of Software Testing Methods
	Static Methods
	Dynamic Methods

	Why do we want to use a Testing Framework?
	Sanity Tests
	Mere assertions are certainly not enough!

	Architecture of xUnit Frameworks
	Structure of a Test Case
	Test Doubles

	Introduction to a C++ Unit Testing Framework
	Test Driven Development
	Behavior Driven Development
	Writing Testable Code
	Preliminary Overview of some Terminology
	Seams
	Lean Constructors
	Lean Functions and Classes
	Object Graph Construction
	Global State
	Law of Demeter
	Design for Testability and Synergies

