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Abstract

Energy conversion devices which are based on a practical Stirling cycle comprise ‘en-
gines’ which can use low-temperature heat sources such as solar thermal energy and
industrial waste heat as well as ‘refrigerators’ which can be used for air-conditioning,.
Currently, these devices are not very popular but they could play an important role in
dealing with global challenges such as pollution and climate change. Port-Hamiltonian
systems theory provides a modular approach to modeling physical systems. These sys-
tems are defined based on a geometric object called Dirac structure which encodes
the exchange of power between different aspects of the system. Port-Hamiltonian sys-
tems are naturally passive making them attractive representations of complex systems
arising from network modeling as well as modeling of distributed parameter systems.
Their structural properties turn out to be useful for accurate numerical computations,
model generation, model simplification, optimization and control. In order to apply
this theory to nonequilibrium thermodynamic systems such as Stirling-cycle devices,
a previously mentioned connection to the GENERIC framework is explored in this the-
sis. By using the total exergy as a Hamiltonian function, irreversible and reversible
processes can be modeled on an equal footing. The structure of GENERIC port-
Hamiltonian systems ensures that the reversible dynamics conserve the exchanged
exergy and the irreversible dynamics destroy some of the exchanged exergy. A sim-
ple lumped-parameter example shows how the graphical modeling language of bond
graphs can be used to represent GENERIC port-Hamiltonian systems. Simulation re-
sults are obtained based on a software implementation which automatically turns
equations into results. Manually writing problem-specific code is avoided by leverag-
ing symbolic computation and code generation.
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Introduction

This thesis tries to make a first step towards using port-Hamiltonian systems theory
to model, simulate and optimize energy conversion devices such as (thermoacoustic)

Stirling engines.

1.1 Stirling-cycle devices

Devices based on the Stirling cycle can operate in two modes: As prime movers (or
engines) they can use any heat source such as solar thermal power, waste heat or
external combustion to produce mechanical power. As heat pumps (or refrigerators)
they use mechanical power to move thermal energy from a colder to a warmer space.

The Stirling cycle is a closed thermodynamic cycle. A compressible working fluid such
as air, argon, helium or nitrogen is periodically compressed and expanded at different
temperature levels to either produce mechanical power or to pump heat. The working
fluid remains in the device indefinitely and needs to be replenished only if there is
some leakage.

Figure 1.1 shows a schematic drawing of a Stirling engine. Thermal energy is supplied
to the hot compartment via the hot heat exchanger and taken from the cold compart-
ment via the ambient heat exchanger. The displacer piston is actuated by some drive
mechanism causing the volumes of the two compartments to change periodically.

When the displacer piston moves to the left, the hot working fluid is pushed through
the regenerator into the cold compartment where it is cooled by the ambient heat
exchanger. As the hot gas moves through the regenerator, some of its thermal energy

is temporarily stored there. Hence, the ambient heat exchanger has to do less cooling.

When the displacer piston moves back to the right, the cold working fluid is pushed
trough the regenerator into the hot compartment where it is heated by the hot heat ex-
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Fig. 1.1 Schematic drawing of a Stirling engine. HOT represents a hot heat exchanger
and AMBIENT represents a heat exchanger which has a temperature slightly above am-
bient temperature. The displacer piston is actuated by a controlled force input (not
depicted). Further, the load which is attached to the power piston is not shown. For a
traditional Stirling engine, the power piston and the displacer piston are kinematically
linked to a flywheel and their phase angle is chosen as 9o°.

changer. As the cold gas moves through the regenerator, it already warms up. Hence,
the hot heat exchanger has to do less heating.

The design of the regenerator involves a trade-off between a high heat capacity and
a low heat conductivity and another trade-off between a large surface area for heat
exchange and low viscous losses. If viscous losses are low, little force is required to
drive the displacer piston because the pressure in both compartments is nearly the

same.

If the displacer piston is on the left then most of the working fluid is in the cold com-
partment and the average temperature is low. Likewise, if the displacer piston is on
the right then most working fluid is in the hot compartment and the average tempera-
ture is high. Hence, a periodic movement of the displacer piston causes an oscillation
of the average temperature of the working fluid. This oscillation is accompanied by an
oscillation of the average pressure. This pressure oscillation drives the power piston
which in turn drives a load.

The limit cycle and consequently also the performance of the engine are strongly in-
fluenced by the movement of the displacer piston. Traditionally, a mechanical mecha-
nism is used as a simple physical feedback controller: Some of the extracted mechani-
cal power is fed back to the engine to drive the displacer piston. The mechanism links
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the linear motion of the pistons and the rotrary motion of a shaft. This drive mecha-
nism determines the (usually fixed) phase difference between the (usually harmonic)
motions of the different pistons. Numerous variants of such engines exist differing for
instance in their arrangement of the pistons, the number of cylinders and the type of
drive mechanism. Unfortunately, traditional Stirling devices require lubrication and
dynamic seals which can withstand pressure. Further, traditional Stirling engines are
not self-starting.

Over time, various other kinds of Stirling-cycle devices have been developed:

Free-piston devices use (gas) springs attached to the pistons to eliminate the drive
mechanism. This reduces the need for lubrication and dynamic seals. Further, these

engines are self-starting.

Actively controlled Stirling devices use some actuator to drive the displacer piston.
This leads to greater flexibility in shaping the limit cycle of the engine. The idea
of designing limit cycles by solving an optimal periodic control problem has been
explored in [36].

Liquid-piston devices use oscillating liquid columns as pistons. These engines are
simple, cheap, reliable and often self-starting. Unfortunately, they tend to have low
efficiencies because they usually operate at atmospheric pressure (as mean pressure).
Nevertheless, a cost-effective and robust design can still lead to a great product for
certain use cases. For instance, these engines can be used for pumping water even if

electricity is not available.

1.1.1 Thermoacoustic devices

In travelling-wave thermoacoustic devices the working fluid also approximately ex-
ecutes a Stirling cycle [3, 12, 14]. Acoustic waves involve periodic compression and
expansion of the fluid and therefore they are accompanied by temperature oscilla-
tions. In thermoacoustic devices, an acoustic wave in a sense replaces the pistons and

the drive mechanism.

As prime movers, these devices convert thermal energy into acoustic power and as
heat pumps (or refrigerators) they consume acoustic power. The conversion process
takes place inside so-called thermoacoustic cores which consist of two heat exchang-
ers and a regenerator (i.e. a porous medium) placed between them. A core which

is operating as a prime mover can be seen as an acoustic amplifier. Tubes are con-
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nected to both ends of a core to create a feedback loop. This feedback loop essentially
serves as the drive mechanism. There are various possible configurations for build-
ing thermoacoustic systems. These differ for instance in the number of cores and the
topology and dimensions of the feedback network which connects the cores. These
systems usually have no moving parts (at high temperatures). As a consequence, they
are rather easy to fabricate at low cost, require no lubrication and they are expected
to be reliable systems. Thermoacoustic engines are self-starting.

1.1.2 Why these devices?

During the last century, the use of fossil fuels has become extremely prominent. As
a consequence, problems related to pollution now affect the lives of most people and
other species on the globe in various ways. Nowadays, many of us hope that we will

soon be able to satisfy our energy demand using clean renewable sources.

At the same time, industrial processes reject large amounts of low and moderate tem-
perature heat into the atmosphere. Cheap heat engines which can utilize this waste
heat seem to be an attractive technology to mitigate the negative impact of industrial

processes on the environment and the climate.

In many places, solar thermal energy is an abundant resource which is barely tapped.
Among the technologies which are able to use solar energy, photovoltaics (PV) is by far
the most popular one. It is well known that the production of PV panels is expensive.
Further, PV panels eventually turn into electronic waste which is hard to recycle. Due
to these factors, regenerative heat engines may be a superior alternative for cetrain
applications.

Example 1.1 (solar cooling systems).

By combining thermoacoustic prime movers and heat pumps, a refrigeration system
powered by solar thermal energy can be realized. The idea is illustrated in Fig. 1.2 and
a possible setup is shown schematically in Fig. 1.3.

A thermoacoustic cooling system (consisting of vacuum tube solar thermal collectors,
tubes and heat exchangers) seems to be a promising, simple and durable solution. Its
components are easy to recycle.

In comparison, a cooling system consisiting of PV panels, PV inverters and a tradi-
tional air-conditioning device is much more expensive to fabricate in theory. Further,
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Fig. 1.2 In a thermoacoustic cooling system, the solar thermal collector supplies heat
at a relatively high temperature level to the thermoacoustic cores running as prime
movers (1). The prime movers generate acoustic power which is then used by the cores
running as refrigerators (2). The remaining heat at the cold end of the prime movers
is released to the environment (3). The refrigerators are using the acoustic power to
extract heat from a cool space (4). This heat is then released to the environment which
is at a higher temperature level (5).

these components have a rather limited lifetime and recycling them is much more
difficult. ©

More information about Stirling-cycle devices can for instance be found in the review
article [39] and the references therein.

1.2 Port-Hamiltonian systems

The port-Hamiltonian approach [8] combines the systems-theoretic perspective which
is known for example from control and information engineering with Hamiltonian

mechanics.

Hamiltonian mechanics developed as a reformulation of Lagrangian mechanics which
in turn was born as a reformulation of Newtonian mechanics. These three perspec-
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Fig. 1.3 Four thermoacoustic cores are connected with tubes to form a thermoacoustic
cooling system. The two cores operating as prime movers generate acoustic power
which is consumed by the two cores running as refrigerators. An acoustic wave is
travelling around the loop. It transports mechanical power and lets the fluid inside
the cores execute approximately a Stirling cycle.

tives on the phenomenon of motion of macroscopic objects lead to the same pre-
dictions. Lagrangian mechanics derives balance laws from a variational principle. A
Hamiltonian system can (usually) be obtained from a Lagrangian system by means of
the Legendre transformation. The time-evolution of a Hamiltonian system is ‘driven’
by the differential of the total energy in the system. A geometric structure describes
the reversible exchange of energy between different forms of energy storage.

Systems theory developed as a general theory of signals and systems in the context
of electrical, electronic and information engineering. These systems interact by ex-
changing signals. In contrast, the port-based approach [2] to modeling physical sys-
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tems is a more constrained theory of systems which is closer to physics. These systems

interact by exchanging power.

Port-Hamiltonian systems are Hamiltonian systems which can interact with other
(port-Hamiltonian) systems through ports. Further, irreversible dynamics can be
modeled by terminating a port with a resistive relation.

1.2.1 Why port-Hamiltonian modeling?

Today, computer-aided engineering (CAE) tools are widely used in industry for simu-
lation and optimization tasks. By now, there also exist various software packages for
the simulation of multiphysics systems. Unfortunately, most tools are not suited to
model complex systems by interconnecting simpler subsystems in a systems-theoretic
sense. Yet, many systems (e.g. thermoacoustic cooling systems) are best modeled as
interconnected (multiphysics) systems. It should be possible to replace one subsys-
tem model with another one if both models interact with their environment in a suf-
ficiently similar way. For instance, it is often desirable to replace a high-fidelity model
of a subsystem with a less complex surrogate model to make optimization tasks faster
or even practically feasible. Different models for the same subsystem can be evaluated
by comparing simulation results before and after changing the model. Optimization
algorithms could then adaptively switch between models of different complexity / fi-
delity. Similarly, a systems-theoretic approach to simulation software would help to
bridge the gap between plant design and control design.

Compared to traditional systems theory, port-Hamiltonian systems theory is based
on a more structured representation of systems and subsystems which is based on the
exchange of energy. The port-Hamiltonian approach focuses on the flow of power be-
tween the components of the system. Since energy is a quantity common to all areas of
physics, this approach can help to systematically formulate the coupling between dif-
ferent physical domains. Further, a more structured representation should facilitate
the automated generation of correct equations and algorithms based on high-level
descriptions.

Port-Hamiltonian systems are based on a geometric structure which describes the
power-conserving interconnection of different parts of the system. This stucture is
useful for analysis tasks. In particular, it makes it much easier to find conserved quan-
tities (so-called Casimirs [13]) which can be used to simplify the model or to design
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control laws. Further, the abstract formulation based on concepts from differential

geometry often makes reasoning independent of a particular choice of coordinates.

Discretization in space and time should be guided by an attempt to find a discrete ana-
logue of the underlying continuous structure. When successful, unphysical artifacts
such as numerical damping and spurious modes are avoided. Research on geomet-
ric numerical integration shows that awareness of the geometrical structure can be
beneficial for developing numerical methods for time integration [19, 25]. Geometric
integrators preserve in some sense the geometrical structure in the discrete setting.
Information about structure-preserving space discretization methods for distributed-
parameter port-Hamiltonian systems based on Discrete Exterior Calculus (DEC) [20]
as well as Finite Element Exterior Calculus (FEEC) [30, 41] can for instance be found
in the recent monograph [46].

Similarly, model-order reduction should preserve as much structure as possible to
retain basic physical properties such as passivity. The recent preprint [45] is concerned
with structure-preserving model reduction for linear differential-algebraic systems.
Model reduction for nonlinear port-Hamiltonian systems is for instance the topic of
article [38].

The port-Hamiltonian setting is also well suited for applying energy-based (nonlin-
ear) control methods [15, 16, 17, 22, 27, 40]. The Passivity-Based Control (PBC) tech-
nique of Control by Interconnection (CbI) assumes the controller as another port-
Hamiltonian system. I think that Stirling-cycle devices could be an application where
the energy-based viewpoint and in particular the control by interconnection paradigm
might be superior to the classical signal-processing paradigm where input and output
causalities are fixed by assuming sensors and actuators. The CbIl method allows for a
physical interpretation of the controller which could possibly inspire new engineering

solutions.

Energy-based modeling of physical systems using port-Hamiltonian systems theory
seems to be a promising direction for further research and could easily lead to a rev-
olution in the world of CAE tools. In particular, using this approach to study and op-
timize regenerative heat engines seems to be an interesting field for future research.
The possible benefits of this setting could help researchers to bring forth more sus-
tainable solutions.
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1.2.2 Irreversible thermodynamical systems

The Hamiltonian approach to classical mechanics is concerned with formalizing the
reversible exchange of energy between different forms of storage in a geometric way.
The time evolution of a Hamiltonian system is ‘driven’ by the differential of the Hamil-
tonian function. This function is sometimes called energy function because it maps
the system state to the total energy stored in the system.

Hamiltonian systems have reversible dynamics. Therefore, it is not possible to model
thermodynamic systems which feature irreversible heat transfer as Hamiltonian sys-
tems. In contrast, port-Hamiltonian systems can incorporate irreversible dynamics.
This is achieved by terminating a port with a resistive relation. The system dynamics
can then be seen as a superposition of a reversible (Hamiltonian) contribution and an
irreversible contribution.

A port-Hamiltonian formulation of heat conduction has been presented in [21] by
using the total internal energy as the Hamiltonian function. Other approaches for
modeling irreversible thermodynamical systems as (quasi) port-Hamiltonian systems
have been suggested: For instance, a class of quasi-port Hamiltonian systems called
Irreversible Port-Hamiltonian Systems has been presented in [34]. These systems are
called quasi-port Hamiltonian because an additional modulating function is used to
ensure that the total energy (which is expressed by the Hamiltonian function) is con-
served by the irreversible dynamics. More recently, an approach based on the sym-
plectization of contact manifolds has been presented in [44].

The idea of splitting the system dynamics into a reversible and an irreversible contri-
bution also lies at the heart of the General Equation for the nonequilibrium reversible-
irreversible coupling (GENERIC) [9, 10, 24]. The GENERIC can be seen as a general
framework for modeling thermodynamical systems. The reversible contribution is
modeled by a Hamiltonian system whose dynamics is generated by the total energy
function. A condition ensures that the reversible dynamics conserve the total en-
tropy. The irreversible contribution is modeled by a gradient system whose dynamics
is generated by the total entropy function. A condition ensures that the irreversible
dynamics conserve the total energy. The GENERIC framework can be extended to

open thermodynamical systems [26].

Most (quasi) port-Hamiltonian approaches for modeling thermodynamic systems use
the total energy in the system as the Hamiltonian function generating the dynamics.
In contrast, the GENERIC relies on two different functions, namely the total energy
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and the total entropy functions. The preprint [42] shows a connection between the
GENERIC framework and port-Hamiltonian systems theory. The central idea is to use
the total exergy of the system as the Hamiltonian function. This approach is explored
in the present thesis.

1.3 Scope of this work

In the following chapter, important aspects of equilibrium and nonequilibrium ther-
modynamics are reviewed. This is followed by an introduction to port-Hamiltonian
modeling in Chapter 3: After a short section about traditional Hamiltonian systems,
the port-based approach is introduced alongside the graphical modeling language of
bond graphs. Lumped-parameter systems are used as simple examples illustrating the
ideas. Attention is paid in particular to systems with irreversible dynamics. Finally,
the structure-preserving time integration of port-Hamiltonian systems based on con-
tinuous collocation methods is reviewed and then applied to examples. Chapter 4
introduces the GENERIC approach to modeling irreversible non-equilibrium ther-
modynamical systems. A lumped-parameter system is used as an example illustrat-
ing the main idea. Chapter 5 explores the connection between the GENERIC frame-
work and port-Hamiltonian systems theory. This leads to a class of irreversible port-
Hamiltonian systems which use the total exergy as their Hamiltonian function. The
simple but physically relevant example of the previous chapter is revisited to illustrate
the idea of exergy-based port-Hamiltonian systems. It is shown that these systems can
be visualized as bond graphs: Power bonds are used to express the exergy exchange
between the system components and irreversible processes such as heat conduction
and friction are expressed by components which destroy exergy. Chapter 6 draws
conclusions and discusses possible directions for future work. Appendix A gives a
high-level low-threshold introduction to differential geometry basics for people who
are unfamilar with the subject. In Appendix B, a thermodynamic potential for an ideal
gas is derived from the Sackur-Tetrode equation.



Thermodynamics

This chapter shall give a self-contained introduction to those aspects of thermody-
namics which are important in later chapters. Thermodynamics aims at describing
physical systems at the macroscopic level. The microscopic configuration (which is
considered for instance in statistical mechanics) is not taken into account in a ther-
modynamical system model.

Equilibrium thermodynamics is actually concerned with ‘thermostatics™ The systems
of interest are assumed to be in an equilibrium state. In fact, thermodynamic equi-
librium is an axiomatic concept. The theory focuses on fundamental properties of
the constitutive relations linking the different thermodynamic variables of a system.
Nonequilibrium thermodynamics on the other hand is concerned with dynamical sys-
tems which may undergo reversible and irreversible processes such as work interac-

tion and heat conduction.

Definition 2.1.
Thermodynamic systems may be classified according to how they can interact with
their environment [37]: A system is said to be

* closed if it does not exchange matter (i.e. mass or particles).

* adiabatically closed if it is closed and there there is no heat flux across the system
boundary.

* isolated if it is adiabatically closed and there is no exchange of mechanical power.

A
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2.1 Equilibrium Thermodynamics

This section shall give a short overview of some of the most important fundamentals
of equilibrium thermodynamics. The textbook [4] shall serve as a reference for this
section.

Definition 2.2 (types of variables).

Thermodynamic variables can be divided into different categories:

1. The magnitude of an intensive variable does not depend on the system’s size.

2. On the other hand, the magnitude of an extensive variable depends homoge-
neously (of degree 1) on the system size: If a system is divided into subsystems,
the sum of the values for each subsystem is equal to the value for the whole sys-

tem.

(a) Dividing an extensive variable by the mass of the system yields a so-called
specific variable. The magnitude of a mass-specific variable does not depend

on the system’s size. In this sense, specific variables are intensive variables.

(b) Similarly, an extensive variable can be divided by the system’s volume re-
sulting in a (volumetric) density. The magnitude of a density does also not

depend on the size of the system.

Remark 2.3 (notation for different types of variables).

In this thesis, extensive variables, specific variables and densities are referred to as
variables with extensive character. These variables are denoted by lowercase Latin
letters. Intensive variables which are not specific variables or densities are referred to
as variables with intensive character. These variables are denoted by lowercase Greek
letters.

For instance, s denotes entropy (density), v denotes volume and m denotes mass (den-
sity). The corresponding intensive variables are the temperature 6, the pressure =
and the chemical potential y, respectively. Similarly, p denotes the linear momentum
(density) and the corresponding velocity is denoted by v (upsilon).

To avoid confusion, the ratio of a circle’s circumference to its diameter is denoted by
7 throughout. A
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A widely accepted postulational formulation of equilibrium thermodynamics is pre-

sented in [4, p. 283f.] (using a slightly different notation):

“Postulate I. There exist particular states (called equilibrium states) that, macroscop-
ically, are characterized completely by the specification of the internal energy u and
a set of parameters x;, x,, ..., x, later to be specifically enumerated.”

It can often be observed that isolated systems approach an equilibrium state which is
independent of the history of the system. Postulate I says that such an equilibrium
state is fully determined (on the macroscopic level) by a finite set of extensive state
variables u, x4, ..., x,,. Here, u is the internal energy of a system and x; could for
example be its volume.

“Postulate II. There exists a function (called the entropy) of the extensive parame-
ters, defined for all equilibrium states, and having the following property. The values
assumed by the extensive parameters in the absence of a constraint are those that

maximize the entropy over the manifold of constrained equilibrium states.”

Postulate II essentially assures the existence of a fundamental equation
s = S, xq, ..., x,).

The function S contains all the thermodynamically relevant information about the

system.

“Postulate III. The entropy of a composite system is additive over the constituent
subsystems (whence the entropy of each constituent system is a homogeneous first-
order function of the extensive parameters). The entropy is continuous and differen-
tiable and is a monotonically increasing function of the energy.”

Postulate III says that S is a homogeneous first-order function of the extensive pa-

rameters, i.e.

VeeR" : S(cu, CXpy oo CXxy) = ¢ SW, Xq, .0y X))
The latter part of the postulate implies that s = S(u, x|, ..., x,,) can be solved for u
and hence
u=U(s, xq, ..., x,)

is also a fundamental equation. The function U is called a thermodynamic potential of
the system. It is a smooth function on the (1+#)-dimensional manifold of equilibrium
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states with coordinates (s, xy, ..., x,). Its differential is
oU(s, xq, ..., X oUu(s, xq, ..., x oUu(s, x{, ..., x
a = Y& W g5 + : ) dx; + ... + : ) dx, .
N 0x, 0x,,
N ~- <4 N ~ J - ~ _
0(s, x1, ..., xp) (S8, X715 e es X)) (S, X1, .0y Xp)

The component functions of the differential are called thermodynamic equations of
state. In paricular, 6 is called thermodynamic (equilibrium) temperature and the

quantities z; are called thermodynamic forces.

The temperature and the thermodynamic forces are intensive variables. If U is chosen
as a potential then the intensive variables are not independent variables but rather
functions of the state.

“Postulate IV. The entropy of any system vanishes in the state for which

U _ a»
0= o =0.

Example 2.4.

A more concrete example of a thermodynamic system is a gas contained in a volume
v = x;. If it is possible to add or remove some amount of gas from the system then
the mass m = x, is another extensive state variable. There exists a function U(s, v, m)
which is the thermodynamic potential of the system. Since all parameters are exten-
sive variables, U must be a homogeneous first-order function, i.e.

VeeRY : Ues,cv,em) = cU(s, v, m). (2.2)

From this it follows that

dU(cs, cv, cm) _ 0(0 U(s, v, m))
dc B dc

= U(s, v, m) (2.2)

and therefore

(2.2) dU(cs, cv, cm) d(cs) + dU(cs, cv, cm) d(cv) +

U b b
(s, 0, m) a(c s) oc a(c o) dc
_ oU (s, v, m) s+ oU (s, v, m) b+ oU (s, v, m) m (2.3)
X 0s J . ov . om '
6(s. 0. m) (s, v, m) (s, 0. m)

Here, 6 is the thermodynamic equilibrium temperature, r is the thermodynamic equi-
librium pressure and y is the chemical potential per unit mass.
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An infinitesimal change in internal energy can be written as the sum of energy-conjugate
pairs formed by a (dependent) intensive variable and an infinitesimal change of the

corresponding extensive variable:

dU(s, v, m) = 6(s, v, m)ds — z(s, v, m)dv + u(s, v, m)dm

A fundamental equation of the form u = U(s, v, m) for an ideal gas can for example
be derived from the Sackur-Tetrode equation, see Section B.2.

If alternatively s = S(u, v, m) is used as a fundamental equation then a tuple (u, v, m)
fully characterizes a thermodynamic equilibrium state of the system. Analogously to
Eq. (2.3), it can be shown that

S(u, v, m) = (é)(u, v, m)u + <%>(u, v, M)V — <

SRS

)(u, v, m)m.

where for instance (%) is in fact one symbol representing a single function.

An infinitesimal change in entropy can be written as the sum of entropy-conjugate
pairs formed by a (dependent) intensive variable and an infinitesimal change of the

corresponding extensive variable, i.e.

dS, v, m) = <%>(u, v, m)du + (%)(u, v, m)dv — <

SR~

)(u, v, m)dm.

A fundamental equation of the form s = S(u, v, m) for an ideal gas is for example
given by the Sackur-Tetrode equation, see Section B.1.

If the system would contain only solid material then assuming a fixed mass and a fixed
volume would turn m and v into constants. Consequently, a fundamental equation of
the form u = U(s) or s = S(«) would suffice. o

Throughout this thesis, the internal energy will be used as a thermodynamic potential.

Since equilibrium thermodynamics is limited to describing equilibrium states of a
system, only those changes of the system can be considered which happen so slowly
that the system always remains in some equilibrium state. These so-called quasi-static
processes can be seen as curves on the (1 + n)-dimensional manifold of equilibrium
states. A quasi-static process is an idealized concept which is of limited practical use

in many engineering applications, see also [4, p. 95].
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The internal energy u of a system can change due to exchange of energy with the
environment. This exchange can happen in two forms, namely work and heat. It is

expressed by the balance equation
du = aw + do.

Here, AW and dQ represent infinitesimal amounts of transferred energy in the form
of work and heat, respectively. Note that W and Q are not thermodynamic variables
and hence dW and dQ are not differentials but process-dependent quantities (in the
general case).

For a quasi-static process however, it holds that d0 = 6 ds and that AW = —z dv+pu dm.
It can be shown that this follows from the principle of maximum entropy stated in
Postulate II. Further, the thermodynamic equilibrium pressure z can be identified

with the external mechanical pressure.

Remark 2.5 (Carnot engine).

The Carnot cycle is a theoretical thermodynamic cycle [4, p. 118]. It describes an ide-
alized heat engine called the Carnot engine. The Carnot cycle is entirely reversible
and hence generates no entropy. It achieves the highest efficiency which is possible
for any heat engine operating betwen two given reservoirs. This theoretical limit for
achievable efficiency is called the Carnot efficiency.

Figure 2.1 shows a Carnot engine which extracts mechanical work from a hot reservoir
with constant temperature ;. The heat intake per cycle Q;, > 0 from this reservoir
is associated with an entropy intake s;, > 0. Since the Carnot engine is executing
a thermodynamic cycle, entropy cannot accumulate inside the engine. Further, no
entropy is generated inside the engine because the Carnot cycle is perfectly reversible.
Consequently, the intake of entropy s;,, has to be balanced by a discharge of entropy

to the ambient reservoir implying that s This is associated with a discharge

out = Sin-
of heat Q. > 0 to the ambient reservoir at constant temperature 6.

The entropy balance equation s, = s;, can be written as
= — Qout . (2"4)

This yields the energy balance equation

(2.4) 0o O — 0o
Wout = Qin - Qout = Qin - Q_Qin = 0
h h

Qin ) (2‘5)
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Fig. 2.1 A Carnot engine operating between two isothermal heat reservoirs. In each
cycle, the fictitious engine consumes the heat Q;, at the temperature level 6, and

rejects the heat Q,,; at the temperature level 6, to produce the work output W.

expressing how much work W, is obtained for a given heat intake Qj,,.

The temperature ratio
0 — 0o
fCarnot = 0 (2.6)
h

is the efficiency of the Carnot engine and hence called the Carnot efficiency. A

Remark 2.6 (exergy).

Work can be turned into heat but heat cannot fully be turned into work. Therefore,
it is important to differentiate between exchange of work (mechanical power, electri-
cal power, etc.) and exchange of thermal energy (heat power). Exchange of work is
reversible whereas (non-convective) exchange of heat is irreversible.

Based on the concept of a Carnot engine, irreversible exchange of heat power Q at a
temperature level 6 can be associated with an exchange of ‘value’. This value is the
amount of mechanical (or electrical) power W that could be extracted from the heat
power by a hypothetical engine which achieves Carnot efficiency and rejects heat at
the reference temperature 6. The value is given by
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The exchanged value is called exergy exchange rate, see [1]. It is measured relative to
a fixed reference temperature 6.

If heat is exchanged at a higher temperature it carries more exergy and at the same
time less entropy is produced. Only reversible work interaction carries 100% exergy
and produces no entropy. Even though irreversible exchange of heat has a different
nature than reversible exchange of work, the concept of exergy makes it possible to
directly compare the two forms of energy exchange.

Heat conduction is caused by temperature differences. When heat leaves one subsys-
tem at a higher temperature level and arrives at another subsystem at a lower temper-
ature level then the exergy that is removed from the first subsystem is larger than the
exergy added to the second subsystem. Irreversible processes such as non-isothermal
heat conduction destroy exergy and create entropy.

Throughout this thesis, the word ‘power’ is used for ‘energy exchange rate’ as well as
for ‘exergy exchange rate’ If not stated, the precise meaning can be inferred from the
context.

The exergy of a system is the amount of work which can theoretically be extracted
from it by a perfectly reversible process until it is in equilibrium with a given refer-
ence environment. In the absence of chemical reactions, the exergy of a system with
thermodynamic potential U(s, ...) is given by

U(s, ...) — 0ys. (2.7)

The derivative of this exergy with respect to entropy is 0(s, ...)—#6,. If exergy is consid-
ered as a potential (to do work) then an infinitesimal change of exergy caused by an in-
finitesimal change of entropy can be written as (6(s, ...)—6,) ds. An exchange of heat
power Q at temperature 6 is associated with an entropy exchange rate § = % Q. Con-

sequently, the exergy exchange rate is given as ((s, ...) —6;)s = % 0, see Eq. (2.6).
A
2.2 Nonequilibrium Thermodynamics

It can often be observed that isolated thermodynamic systems which are not at equi-
librium approach an equilibrium state which is independent of the system’s history.
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But equilibrium thermodynamics doesn’t have anything to say about the time evolu-
tion towards this state. This is the task that nonequilibrium thermodynamics tries to
solve. Of course, a macroscopic description of time evolution is not only interesting
for isolated systems. Especially in engineering, it is much more interesting to consider
systems which can interact with their environment.

A very common approach is to consider spatially-distributed thermodynamical sys-
tems which are locally assumed to be in a (time-dependent) equilibrium state. This
local equilibrium assumption allows for instance to define a temperature field for a
heat-conducting fluid or rigid body [24, p. 39].

Every point in the spatial domain of a system is considered as an infinitesimally small
thermodynamic system. Yet, from the microscopic perspective this infinitesimally
small system ought to contain a big number of atoms or molecules such that averaging

over its microstructure makes sense.

This may sound paradoxical but one has to remember that the balance laws for the
state variables are obtained in integral form and partial differential equations are then
derived using a localization argument. Therefore it is argued that the integral form of
the balance laws is physically more meaningful.

Numerical computations rely on finite spatial resolution and many discretization meth-
ods such as finite volume methods, finite element methods as well as discrete exterior
calculus methods are based on precisely the integral form of the balance laws. If for
instance all finite volumes are big enough to contain enough matter to justify the
macroscopic viewpoint yet small enough to justify the assumption that the contained
matter is in (or at least sufficiently close to) a thermodynamic equilibrium state then
the paradox is resolved.

Example 2.7.
Similar to Example 2.4, a gas contained in a volume shall serve as an example of a
thermodynamic system. But this time, the gas is considered as a spatially-distributed

system on a spatial domain &% and no global equilibrium state is assumed.

To differentiate between the distributed case here and the lumped case from Exam-
ple 2.4, in this example all lumped quantities are denoted with an extra bar on top.

A particular equilibrium state of the gas in Example 2.4 is defined by a tuple (5, 0, m).
In contrast, the macroscopic state of the gas in this example is given by a tuple (s, m),

i.e. the entropy and mass density fields. For instance, the entropy density field (at a
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fixed point in time) is a map
st R - R

res(r).

This choice of (infinite-dimensional) state variables assumes that the internal energy
density serves as the local thermodynamic potential.

The task here is to convert a fundamental equation of the form it = U (5, o, m) to alocal
fundamental equation of the form u = U(s, m). Since the volume density v is always
1, only the entropy density s and the mass density m remain as (infinite-dimensional)
state variables. The local thermodynamic potential U contains all thermodynamic
information except for the system’s size.

Let C C % be a control volume and define & = Vol(C). If the gas inside C is at
equilibrium then s and m are constant fields. Hence, u = U(s, m) is also constant
throughout C. Consequently, it must hold that

SU

i
Il

m = mo (2.8)

i=UG, 0,m) = Us,m)d = U(i,
v

According to Eq. (2.8), U is defined as

UG, 0,m) UGso, 15, mp) U(sm?, Im’, mm?)
U(s, m) = — = — = 3 (2.9)
U U I1m

expressing the internal energy per unit volume. The last equality in Eq. (2.9) is a
consequence of the homogeneity of U, see Eq. (2.1).

The intensive quantities can equivalently be expressed as functions of s and m. For
the temperature it holds that

(2.10a)

1
05 s b ds
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and similarly for the chemical potential per unit mass it holds that

oU(5, 0, m) _ aU(s, m) _

i(s, o, m) = I o u(s, m). (2.10b)
For the pressure it holds that
o oU (5, o, m)
ﬂ(sa v, m) = -
a0
oz 8)o)
- oD (2.100)
oU(s,m) ( s\ _  doU(s,m) / m\ _
0s < D)U om < D)U Uls, m)
= ouU(s, m) s + U, m)m — U(s, m) = n(s, m).
as om

Clearly, the function U in Eq. (2.9) is independent of & = Vol(C) and hence the above
equations for u, 0, u and r also hold in the limit Vol(C) — 0.

If a local potential function U is known then an entropy density field s : %# — R* and
a mass density field m: # — R* fully determine the internal energy density field u,
the temperature field 6, the chemical potential field 4 and the pressure field .

Alocal fundamental equation of the form u = U(s, m) for an ideal gas can for example
be derived from the Sackur-Tetrode equation, see Section B.3. o

Chapter 4 continues to discuss nonequilibrium thermodynamics.






Port-Hamiltonian systems

Section 1.2 already motivated port-Hamiltonian systems (PHS) theory. This chapter
shall give a short introduction to modeling physical systems using this approach. The
first section presents the idea of Hamiltonian systems based on two simple exam-
ples. In the second section, the port-based approach which originated in the works
of Paynter [2] is introduced. First and foremost, attention is given to the concept of
bond graphs. Section 3.3 then hints at the connection between bond graph modeling
and Hamiltonian mechanics. To make the connection precise, the concept of Dirac
structures is formally introduced in Section 3.4. A Dirac structure is a geometric struc-
ture which is associated with the power-conserving interconnection structure of the
physical system. Based on this, Section 3.5 continues with the explicit representa-
tion of finite-dimensional port-Hamiltonian systems. Section 3.6 looks more closely
at the port concept and how it allows to model irreversible dynamics in this gen-
eralized Hamiltonian setting. Finally, structure-preserving time integration of port-
Hamiltonian systems using continuous (Gauss-Legendre) collocation methods is re-
viewed in Section 3.7.

Further introductory reading material can be found for instance in [28, 35].

3.1 Hamiltonian systems

Example 3.1 (simple mass-spring harmonic oscillator).
Usually, the differential equation describing the free vibration of a mass-spring har-
monic oscillator is written as

mg+ kq =0, (3.1)

i.e. as a second-order ordinary differential equation (ODE). This equation is derived
based on Newton’s second law and expresses a balance of forces.
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i
Fig. 3.1 A simple harmonic oscillator with mass m and stiffness of the linear spring .

It is well known that a higher-order ODE can be converted to a system of first-order
ODEs. By introducting the velocity v = ¢ as a new state variable, Eq. (3.1) can be

- 2]

In systems theory, state-space representations are very popular. A linear time-invariant

rewritten as

system without inputs is written as an equation of the form x = A x where x is the
state and A is a linear operator.

If the linear momentum of the mass p = mv is chosen as a new state variable instead

of the velocity o then Eq. (3.2) can be rewritten in state-space representation as

-

The system comprises two energy-storing elements, namely the mass which stores

kinetic energy and the spring which stores potential energy.

The Hamiltonian H is a function that maps the system state to the total energy stored
in the system:

1 11
H = H/(q) + H(p) = ~qkq + =p—
(4. p) (@ )P = saka+ Sp—p
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The right-hand side of Eq. (3.3) contains the derivatives of the Hamiltonian function
with respect to the state variables g and p:

H _ Fp] _[Fe]_ [o 1] @ )
ol |-ka] |-5r@] [-1 o] [5®

The skew-symmetric matrix is called structure matrix. The extra structure of Eq. (3.4)
(in comparison to Eq. (3.1)) helps to show that the system conserves energy. o

A more general class of finite-dimensional Hamiltonian systems contains systems of
the form

=72, (3.5)
X

These systems are defined on a vector space called state space 2 > x by specifying a
smooth Hamiltonian function H : & — R and a skew-symmetric structure matrix J.

Since J + JT = 0, it follows that every system of the form (3.5) conserves energy:

dH oHY _dx oHT oH
- = = = = = J ==
T oox Pau T e W™

oHT oH oHT oH
= — WJT—x) =-— )J—Kx) =0
ox o0x o0x o0x

Fig. 3.2 Spring-mass system.

Example 3.2 (spring-mass system).

The spring-mass system depicted in Fig. 3.2 can be seen as an interconnection of
energy-storage components. The interconnection structure can be represented by the
incidence matrix G of a graph which has the masses as its nodes and the springs as its

1 -1 0
G =
[O 1 —1]

edges:
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The second column of G for instance says that the second edge goes from the first

node to the second node.

The state of the system can be identified with a vector of the form

The Hamiltonian function of the system is

1 ) 1 ) 1 1
H(x) = EqT dlag(kl, ko, k3) q + EpT d1ag<m—, m—)p
)

The spring-mass system can then be modeled by the Hamiltonian system

H _ [0 GT] =@
p -G 0 %(p)
I T e

J oH
E(X)

This example shows that the skew-symmetric structure matrix J encodes how energy
is exchanged between the different components of the system. If the Hamiltonian
system is interpreted as a network model, then J encodes the topology of the “energy-
exchange network”. o

Many more details about Hamiltonian mechanics can for instance be found in [13, 29].

3.2 Bond graphs

Abond graph is a graphical representation of a (multi-domain) physical system model.

Such models are called port-based network models [2].

The nodes of a bond graph are called components. A component can be a storage ele-
ment, a source, a dissipative element or a component used to interconnect other com-
ponents. The edges of a bond graph are called power bonds. A power bond represents
an interaction or more precisely an exchange of power between two components.

Block diagrams which are often used as a graphical representation in systems theory
and control engineering feature unidirectional links: The arrow of an edge indicates
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the direction of the signal flow. In contrast, power bonds represent bilateral relations:
The half-arrow of an edge merely indicates the direction in which an exchange of
energy is counted positive.

A power bond is associated with a pair of conjugated quantities: The pairing (e | f)
of the flow variable f and the effort variable e has the dimension of power.

The half-arrow notation is used to graphically distinguish between the two sides of
the arrow: The flow variable is written on the side with the arrowhead and the effort
variable is written on the opposite side.

Example 3.3.

prime mover —;7 heat pump

In the above bond graph, if the pairing between effort and flow variable is positive,
ie. if
(el f) >0,

then the prime mover is supplying mechanical power to the heat pump. o

Optionally, a power bond may be annotated with a so-called causal stroke. The posi-
tion of the causal stroke indicates which end of the bond defines which variable: The
end with the stroke defines the flow variable and the opposite end defines the effort
variable.

0H,

capacitor q

q
fq:—q:—i

Fig. 3.3 Part of a bond graph showing an ideal capacitor with capacity ¢ and charge g
connected to a 0-junction.

In Fig. 3.3 the causal stroke is shown in red and indicates that the capacitor on the left
side is defining the effort (voltage) and the O-junction on the right side is defining the
flow (current).

The position of the arrowhead and the position of the causal stoke are independent
of each other. The former is always an arbitrary assignment whereas the latter is not:

Storage is naturally associated with integration with respect to time. For example, the
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effort and flow variables at the capacitor are related as follows:

t
ey(t) = %<q<0) - /O fq(T)dT>

Hence, a capacitor determines the effort (voltage) according to a flow (current) which
is imposed by what sits at the other end of the bond.

3.3 From bond graphs to port-Hamiltonian systems

Port-Hamiltonian systems (PHS) theory [8] recognizes that port-based network mod-
els are generalized Hamiltonian systems called port-Hamiltonian systems.

The storage components of a PHS are characterized by their additive contribution to
the Hamiltonian function. This implies the constitutive relations of the system. For
example, the capacitor in Fig. 3.3 is characterized by the contribution H, which ex-
presses the electric energy stored inside the capacitor as a function of the capacitor’s
charge. Since energy is expressed in terms of charge, g is called an energy variable.
The time derivative of an energy variable is called a (storage) flow. In the case of a
capacitor, the flow variable is the current flowing out of the capacitor. The deriva-
tive of the energy with respect to a energy variable is called (storage) effort. For the
capacitor, the effort variable is the voltage across its terminals.

The power-conserving interconnection of components has a geometric structure which
is formalized by the notion of a Dirac structure. The capacitor is connected to a so-
called 0-junction. All flows at a 0-junction must sum to zero and all efforts must have
the same value. A 0-junction thus generalizes Kirchhoff’s current law and is a special
type of a Dirac structure.

spring Dirac structure 1 mass
-: - ‘ - ;i.
fq:—q:—ep fp:—p:eq

Fig. 3.4 Bond-graph representation of the simple mass-spring harmonic oscillator.

Example 3.4 (simple mass-spring harmonic oscillator).
The Hamiltonian system describing the harmonic oscillator from Example 3.1 can be
represented as a bond graph, see Fig. 3.4.



3.3 From bond graphs to port-Hamiltonian systems 29

The two storage components are characterized by their contribution to the Hamil-
tonian function, i.e. H = H, + H,. They are connected via another component &
which is characterized by the structure matrix J: The Hamiltonian system

-1 o
p -1 0 %(p)
J e

can also be written as
f+Je=0.

This equation expresses the relation between flows and efforts at the component 9.
In this cannonical case, 2 generalizes the concept of a gyrator from electrical network
theory.

spring Dirac structure mass

e,(t) = kq(t) S0 = =1e,

t t
q(t) = - / f,()dr fp® = +1le,®) p1) = — / f(0)dr
0 0

Fig. 3.5 Block-diagram representation of the simple mass-spring harmonic oscillator.
The initial values ¢(0) and p(0) are taken to be zero.

In contrast, traditional systems theory uses block diagrams to graphically represent
models. Figure 3.5 shows a direct translation of the bond graph in Fig. 3.4 into a block
diagram. It can be observed that a bilateral relation specified by a power-bond indeed
translates to a pair of unidirectional signal flows. 3

A general block diagram can model arbitrary signal flows between arbitrary mathe-
matical operators and therefore has no implicit connection to physics. In contrast, the
bond-graph modeling languange is quite restricted since it automatically implies cer-
tain structural properties (of the corresponding block-diagram) which are intimately
linked to physics.
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3.4 Dirac structures

Port-Hamiltonian systems have rich structural properties. Their definition is based
on Dirac structures which formalize the concept of a power-conserving interconnec-
tion of different system components. Further, Dirac structures allow the definition
of so-called ports through which a port-Hamiltonian system can interact with its en-
vironment. Usually, this either means interconnecting a PHS with another PHS to
form a larger PHS or terminating a port with a dissipative relation to incorporate ir-
reversible dynamics. Dirac structures further allow to define systems with algebraic

constraint equations.

A constant Dirac structure, i.e. an interconnection structure which does not depend
on the state of the system, is a linear subspace.

! € 2 €
fi /> S /2
e3| f3 e3( f3
(a) O-junction with 3 ports. (b) 1-junction with 3 ports.

Fig. 3.6 Junctions express a power balance.

Example 3.5 (0-junction and 1-junction).
A O-junction is a multi-port component and a particularly simple type of Dirac struc-
ture. Figure 3.6a shows a O-junction with 3 ports. Let # > (f), f,. f3) and & >

(e}, ey, e3) denote the linear spaces of flow and effort variables.

Then the Dirac structure 9, characterizing the 0-junction is a subspace of the so-
called bond space & = # X & defined as

Dy = {(f1- f2 f3 €1, €0.03) EB | —f1+ fo—f3=0, e, =ey=e3} Cyec B

For electical systems, flows correspond to currents, efforts correspond to voltages and
a 0-junction corresponds to Kirchhoff’s current law.
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A 1-junction is defined in a dual manner: Figure 3.6b shows a 1-junction with 3 ports.
The Dirac structure 9, characterizing the 1-junction is defined as

Dy = {(f1, fo- 3. e1.€0,€3) EB | fi=Fr=F3,—ej+e3—e3 =0} Cpec B

Definition 3.6 (finite-dimensional constant Dirac structure).
Let & be the finite-dimensional linear space of flow variables and let & = ™ be the
corresponding dual space containing the effort variables. Further, let

(|)Y: EXxF SR
(e, ) (el f) = e(f)

denote the natural pairing between efforts (covectors) and flows (vectors).

Then, a constant Dirac structure is a subspace & C.. %

of the bond space % = F x & which satisfies the following two conditions:

(i)

V(f,e)eD:(e|f)=0 (3.6a)

(ii)
dim(2) = dim(¥) = dim(¥&) (3.6b)
A

Equation (3.6a) says that the net inflow of power at the interconnection is zero, i.e. the
interconnection is power-conserving. Equation (3.6b) states that the subspace of
power-conserving flows and efforts has half the dimension of the bond space. If
Eq. (3.6a) is satisfied then it is not possible to have dim(2) > dim(%). Hence, Eq. (3.6b)
is a maximality condition.

Example 3.7.
A Dirac structure & which is defined as the graph of a skew-symmetric linear operator
J: F* 5 F e

2 = graph(J) = {(f,e)€ B | f+Je=0}

clearly satisfies Definition 3.6. o
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A more general characterization of constant Dirac structures also applies to infinite-

dimensional vector spaces & and F:

Definition 3.8 (constant Dirac structure [6, 7]).
Let & be the linear space of flow variables and let & = % * be the corresponding dual
space of effort variables. Further, let
(1): ExF SR
(e, /) (el f) = e(f)

denote the natural pairing between efforts (covectors) and flows (vectors).
A non-degenerate symmetric indefinite bilinear form on the bond space 8 = # x &
is defined by symmetrizing the natural pairing:

) BxB SR

((f.00. (£0)) = el /) + el )

Then, a Dirac structure & C,,. & satisfies @ = P where

2t ={(f.0eB |V (f.e)eD: ((f.0). (f.¢)) =0}

is the orthogonal complement of & C,.. & with respect to (-, -)). A

vec

The subspace 9 C
any pair of elements of & the bilinear form (-, -)) vanishes, i.e.

vec B is called an isotropic subspace because it is required that for

V(f.) €D,V (f.8)eD: ((f.0).(f.&)) =

This is equivalent to the condition & C, .. 2.

Further, 9 is called a maximal isotropic subspace because it is required to have max-
imal dimension, i.e.

V(f.)eD: A(f.00 & D: ((f.e).(f.6)) = 0.

This is equivalent to the condition I+ C .. 9.

Since @ Co. Pt and 9* C.. @ < D = D7, a constant Dirac structure is a

maximal isotropic subspace.
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A formal proof showing the equivalence of Definition 3.6 and Definition 3.8 for the
finite-dimensional (lumped-parameter) case can for instance be found in [35, Ap-
pendix A.].

A non-constant (or modulated) Dirac structure is an interconnection structure which
depends on the state of the system. To make this precise, the notion of a linear state
space is replaced by the more abstract notion of a smooth manifold. If " > x denotes
the state manifold of a PHS then the flow' f¢ at time ¢ is a vector in the tangent space
at x(1), i.e. fg(t) = —x(t) € T,,&. The coresponding effort e is a covector (or 1-
form) in the cotangent space at the same point, i.e. e¢(t) = dH (x(t)) € T;( I)SK where
H e C*(X) is the Hamiltonian function of the system. The flow f¢ and the effort eg
are associated with the storage components of the system. It holds that

(fs.es) = (—x, dH(x)) € (TXT ®T*X). (3.7)

This sum of two vector bundles is the vector bundle over 2 which has at every point
x € L the fiber T, X T; X .

If the system has further ports for interacting with its environment or for incorporat-
ing irreversible dynamics, there is another set of flows and efforts (fp, ep) € FpXx &p
associated with the system’s interaction over these ports. Here, #p and &p = % are
linear spaces and hence flat manifods. Thus, it holds that

(fs.fp.esiep) ETX DFp DT L ®Fpy = B. (3.8)

A (generalized) Dirac sturcture is a vector subbundle & Cy 41 % This means that

for every point x € 2 some subspace D (x) Cyee B(X) = T, X X Fp X T X X Fp is

chosen.

Definition 3.9 (non-constant generalized Dirac structure).
Let 2 denote the state manifold of a port-Hamiltonian system with tangent bundle
TZ > fgand cotangent bundle T2 3 eg.

Further, let #p 5 fp and &p = F, > ep be the linear spaces containing the port

variables.

'In the context of differential equations, the mapping which advances initial conditions in time
(solution operator) is called flow. In the context of port-based modeling, a flow is simply a vector
which is tangent to the solution at a particular instant in time.
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Let B=TX & Fp ®T*"X ® F, be the smooth vector bundle over X with fiber
T2 x Fp x T{ X x F, for every point x € X. This means that there is a copy of Fp
and &, over every point x € 2.

For some smooth vector subbundle & Cyp,qie %, the notation (fs, fp, eg, ep) €D
means that Vx € X1 (fg(x), fp(x), e5(x), ep(x)) € D(X) Cyec B(X).

Define the smooth vector subbundle

Pt = {(f,e)e$|v(f,é)e@: €l f)+€lf) =o}

where
Cly: (T"T e F) @ (TL & Fp) = C(X)

((eS,eP) 5 (f&fp)) = eg(fg) +ep(fp)

is the natural pairing between covector and vector fields and 0 € C*(X) is the func-
tion that takes the value zero everywhere on 2.

Then D Cpyndie B is a generalized Dirac structure on X if 2+ = @. A

In particular, the graph of a skew-symmetric vector bundle map
(T*T & &p) = (T & Fp) defines a generalized Dirac structure.

For systems defined with a non-constant Dirac structure integrability (or closedness)
becomes an issue. This is closely related to the topic of holonomic vs. nonholonomic
constraints and to the existence of cannonical coordinates. If a certain integrability
condition is satisfied then the predicate ‘generalized’ is dropped. More information
about (generalized) Dirac structures and their integrability can for instance be found

in [u].
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3.5 Finite-dimensional port-Hamiltonian systems

A finite-dimensional port-Hamiltonian system (in explicit* input-state-output repre-
sentation) is a dynamical system of the form

x = J(x)[dH(x)] + B(x)[y]

(3.9)
BT(x)[dH(x)] .

<
I

Here, & > x is the state manifold and H € C*(Z’) is the Hamiltonian function of the
system. The flows f¢ = —x € T, 2" and the corresponding efforts e = dH(x) € Ty X
define the storage port (fs, eg) of the port-Hamiltonian system. The family of linear
maps

J: XL ->Hom(T; X, T, X)
x — J(x)

has to satisfy
VxeX : Vg eTiZ : J)ég] + JT(0)[es] = 0€ T.X
where JT(x) is the dual (or transpose) map of J(x).

The outputs y = fp € Fp = R™ and the corresponding inputs u = ep € &p = F,; =
P P P P g 1np P P P

(R™)" together define the port (fp, ep) through which the system can interact with
its environment. The family of linear maps

B: 2 - Hom(F,, T, X)
x — B(x)

defines how the inputs affect the system and the corresponding family of dual maps

B': X - Hom(T X, Fp)

X - BT(x)

2A PHS may also be stated in an implicit representation. Network modeling of physical systems
generally leads to systems of differential-algebraic equations (DAEs) since connecting the subsystems
amounts to imposing constraints, see for instance [32, 48].
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defines the outputs of the port-Hamiltonian system.

Remark 3.10 (differential vs. gradient).

Instead of dH (x) often the symbol %(x) is used to denote the differential of H in
matrix notation. This should not be called a gradient since gradients are vectors and
dH(x) € T; X is a covector. Gradients are not intrinsically defined since additionally
a Riemannian metric on & would be required to speak of a gradient. A

The energy balance for this system is

dH oHT _dx oHT oH oHT

- = - = ) el B

dr 0x () e ox () J(x) 0x (XJH ox (x) B(x)u
0

<BT(x) %—Z(x))T u = yTu.

Since the output map is the dual of the input map, inputs and outputs come in pairs.
The outputs and inputs are said to be collocated and their pairing yields the power
that is exchanged across the respective port.

Equation (3.9) can also be written as

x J(x) B(x)| [dH(x)
— . . (3.10)
—y —B (x) 0 u

== NG 7 ——
x) e

~

For every fixed x € &, the linear map N(x): (T*,fl” D 9‘;) = (T.fl” D 9‘71)) is skew-
symmetric and hence the family of maps N defines the (generalized) Dirac structure

D ={(f.e) € (TT®Fp)D(T'TDF,) | VXE€XL: f(X) + N(x)e(x) = 0} .

This geometic structure encodes how power can be reversibly exchanged among the
different storage components and the environment.
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3.6 Port-Hamiltonian systems with irreversible dynamics

Exchange of energy across system boundaries is not only necessary for modelling
larger systems by interconnecting different subsystems but also to incorporate dis-
sipation of energy. Hamiltonian systems have reversible dynamics and therefore irre-
versible dynamics need to be generated ‘externally’. This is achieved by terminating a
port with a resistive relation.

Fig. 3.7 A damped harmonic oscialltor with mass m, stiffness of the linear spring k and
coefficient of the linear damper d.

Example 3.11 (damped harmonic oscillator).
The differential equation describing the free vibration of the damped harmonic oscil-
lator is usually written as

mg+dqg+ kg =0.

The damped harmonic oscillator can be modeled as a port-Hamiltonian system by
considering the damping as an external forcing:

: - 1 ?
H o (@) . H )
pl -1 of [Sw] 1

o0H
- 1| =@
s [aq ]

0
o p)

(3.1)
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The force input u = e and the velocity output y = fi = v together define the port
(f&» eg) which is terminated by the resistive relation

u=-dy < ezg+dfgr =0. (3.12)

This yields the energy balance

dH T
= = = —vdv <0.
dr y u vavo

By combining differential and algebraic equations, Eq. (3.11) can be written as

. oH
d 0 1 |o][ L@
. _ oH
pol=]-1 01| Zw
~y 0 -1]0 u

This shows the (extended) skew-symmetric structure matrix which defines the Dirac

structure of the system. o

Generalizing Example 3.1 yields the following class of port-Hamiltonian systems:

X J(x) B(x) Cx)| |dH(x)
—yg| = | -BT(x) 0 0 Up (3.133)
VR —CT(x) 0 0 Ug
T . ~ AN J
N(x) e

ug = —D(x) yg (3.13b)
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The flow vector and the effort covector are partitioned into storage, boundary and

resistive parts, i.e.

fs —x

f=1fpl=|vg| € XL ®Fp® Fr = F(x)
| /R | VR
_eS_ [dH (x)

e =|eg| =] up ET,®F,®F, = EX).
[ CR | UR

The families of linear maps B and C define the boundary and resistive ports, repec-
tively. The resistive port (fg, er) is terminated by the resisitve relation

m(fR,eR) = eR+DfR = 0.

The family of linear maps

N : X - Hom(&(x), #(x))
x > N(x)

satisfies
VxeZ : Véee &) : Nw[e] + NT(x)[e] = 0e F(x).

and defines the (generalized) Dirac structure

2 ={(/.e) € (TT0F®F) @ (T'T ©F; ® F;) |
VxeZ: f(x) + N(x)e(x) = o}.

Figure 3.8 shows system (3.13) as a bond graph.

The power balance equation

eTf = eT(—N(x)e) = —eTNT(x)e =0

(es | fs) + (ep | fg) + (er | fr) (3.14)
—— Y~ Y~

dH T
— ? MB VB SO

(e | f)
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storage Dirac structure resistive relation

eg er /91

fs S fr \

ep| fp
environment

(fr-er) =0

Fig. 3.8 Bond graph representation of a general port-Hamiltonian system incorporat-
ing irreversible dynamics and exchange of energy with the environment.

which says that
stored power + dissipated power = supplied power

might be called the most important structural property of port-Hamiltonian systems.
An immediate consequence is the so-called passivity property

dH T

y < upyp (3.15)

which says that
stored power < supplied power.

Remark 3.12 (thermodynamic meaning of the Hamiltonian function).

In Example 3.11, the damper converts kinetic energy into internal energy.

Since the Hamiltonian function H does not include internal energy and the Hamil-
tonian is not conserved it cannot be the total energy of the system.

In fact, H is the total exergy of the system, i.e. the maximum amount of work which
can possibly be extracted from it, see Remark 2.6. The common assumption was made
that the system is isothermal. This means it is in equilibrium with an unlimited heat
reservoir at a constant temperature 6,,. The exergy of the system is defined with 6, as
the reference temperature.

Since internal energy u and entropy s are both extensive variables,
u=U(s) = 0ys

is a fundamental equation for an isothermal system at temperature 6, which has no

further state variables. The isothermal assumption renders the state variable s basi-



3.7 Geometric numerical integration 41

cally meaningless because U describes a heat reservoir whose dynamics can be ne-

glected.

If K(p) is the kinetic energy and V' (g) is the potential energy of the damped harmonic
oscillator then its exergy H is

H(g, p) = K() + V(@) + Us) — 845,

see Eq. (2.7).

Hence, the passivity property (3.15) asserts that no exergy is created inside a port-
Hamiltonian system. A

3.7 Geometric numerical integration

The field of geometric numerical integration [19, 23, 25] deals with the design and
analysis of numerical integrators for time integration of ODE systems. The goal is
to preserve geometric properties of the flow of a differential equation by finding a
discrete formulation which shares important properties with the continuous formu-
lation. In particular, this results in good long-time behavior of the discrete dynamics
in the sense that errors don’t grow unbounded as time approaches infinity. Ideally the
discrete-time system would conserve (within machine precision) all quantities which

are conserved for the continuous-time system.

Fig. 3.9 A simple pendulum with an integrated spring.

Example 3.13 (simple pendulum with spring).
Figure 3.9 shows a simple pendulum with an integrated spring. The mass m is attached
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to the pendulum rod which has length / if the spring is relaxed. The gravitational
constant is g. The configuration is given by the angular displacement of the pendulum
rod ¢ and the spring’s extension r. The corresponding conjugate momenta p,, and p,
determine the kinetic energy of the mass. Hence,

2 2
P 2
Hx) = —"— + 2= — g +rcos(p) + krt
2m(+r)? 2m_ 2
}g 14

The reversible process is modeled by the Hamiltonian system

o] [0 o 1 o] mg (I +r)sin(e)
2
0 0 0 1] |- — _Po
r _ mg cos(p) + kr R
) -1 0 0 0 P
Pe m(l+r)?
5] Lo -1 0o of] P |
—f(® vy M

ety =2 (x(n))

The variables ¢ and r correspond to two different forms of storing potential energy
inside the system. The system is nonlinear due to the coupling between the gravita-
tional potential and the spring and due to the trigonometric functions describing the
pendulum kinematics.

The fourth-order Gauss-Legendre collocation method is a geometric integrator. The
simulated dynamics for this example show a nice (but not perfect) result: The error
oscillates inside an interval with fixed bounds. The size of the interval depends on
the time step: ~ 107> for a time step of 0.1 seconds and ~ 10~ for a time step of 0.01
seconds, see Fig. 3.10. For linear dynamics, the quadratic Hamiltonian is conserved by
this method nearly up to machine precision (~ 107!#) given that the time step is not
too large to capture the dynamical behavior. o

This section introduces continuous collocation methods and in particular Gauss-Legendre
methods. More details can be found in the articles[47, 48].
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x 10710 — 5.7778649x 10~ total energy H (J)
56
574
581
594
—60 1 w V\ ﬂ
MR ” M

_62 - W
763 m

25 30 35 40 45 50
time ¢ (s)

Fig. 3.10 A geometrical integrator simulating a nonlinear Hamiltonian system: The
total energy is conserved well. The error remains bounded in time.

3.7.1 Continuous collocation methods

Let a port-Hamiltonian system of the form

(1) = J(x(0)) aa—il(x(t)) + B(x(1)) u(t) (3.16a)
=f(@ ——

e(t)
y0) = BT (x(1) e (3.16b)

be given.

Solving the initial value problem

x(t) = J(x(0)) e(t) + B(x(1)) u(t) (3.17a)
x(0) = x (3.17b)

on some time interval I =t € [0,1 f] is in general not possible analytically.

The problem can be solved numerically by splitting the time interval I into K subin-
tervals
I* = [(k—1)h, kh] .



44 Port-Hamiltonian systems

The index k = 1,2, ..., K identifies a paricular subinterval. The length of the subin-
tervals has to be prescribed by chosing a time step /4 such that t, = hK.

The true solution x(¢) (with ¢ € I) is then approximated by the numerical solution
%(¢) which is defined picewise: On each subinterval, X(r) (with ¢ € I*) is a polynomial
of degree s in the variable . More precisely, if x(¢) € RY then %(7) is a vector of N
polynomials.

Like the time step A, the oder of the polynomial approximation is a parameter that
has to be chosen by the user to control the fidelity of the numerical method.

Since a polynomial of degree s is determined by s + 1 coefficients there are s + 1 (vec-
torial) unknowns per interval. The continuity of the solution between two intervals
determines one (vectorial) unknown. For the first interval I', this unknown is deter-
mined by the initial condition (3.17b).

The remaining s unknowns are fixed by requiring that the differential equation has
to hold at s collocation points t’l‘ S ,t’s‘ € I*. The choice of these points within each
subinterval is important for obtaining a good numerical approximation.

By defining tg =(k—-1)hand t’s‘ 1 = hk, each subinterval can be written as

_ [k .k
Ik - [tO’ ts+1] :
Then, the collocation points . ,t's‘ can be written as tf.‘ = tg + ¢; h with coefficients
¢, ... » g satisfying

Vie{l,...,s} : 0<¢ <1

Vief{l,...,s—=1} : ¢ <ciyq-

Since on each subinterval the numerical solution %(¢) is given as a vector of polyno-
mials of degree s, the time derivative X(¢) is a vector of polynomials of degree s — 1.

The numerical solution %(r) with ¢ € I'* can be written as

t
X(1) = X)) + / X(z)dz. (3.18)
tk

0
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To make life easier, a local time coordinate ¥ € [0, 1] is defined on each subinterval
I* by requiring that = ((k — 1) + rk)h. Hence, 7¥ = 0 corresponds to té and 7* = 1
corresponds to t’sc o1

Based on this normalized time, the polynomial approximation of X can be defined in
a unified manner for all k: On each subinterval, the vector ¥ can be written as a linear

(1) = zs‘,(—f,-k (@)

i=1

combination

More precisely, the n-th component of x is a vector in the vector space that is spanned
by the s basis functions /4, ..., ;. Given such a basis, this vector is determined by the
tuple consisting of the n-th component of each of the vectors fi, ..., f,.

With this change of time coordinate and a choice of basis, Eq. (3.18) can be written as
2tk +7*hy = (k) + / Z —f¥ 1,(,0) hdu
_ ik k[T
= %(5) = h Z(fj / lj(y)dﬂ> .
j=1 0

The collocation method is based on relating ¥ and % at the s collocation pointscy, ..., c;.

Hence, it is convenient to chose the basis polynomials such that the n- th component

of f; expresses the value of the n-th component of X at 7 = ¢;, i.e. —f; = x(c ).

These basis polynomials are the Lagrange polynomials

S T—c;

(@) = H c; — cj

j=1"1 J
J#i

which have the desired property /;(c;) = §;; where §;; is the Kronecker delta.

The value of the numerical solution % at the beginning of each subinterval I* shall be
denoted by xé = Sc(tg). This value is known because of the continuity of the solution
between subintervals or because of the initial condition (3.17b), i.e. x]

— k _
ety o = Xpand x; =
Xopq fork > 1.
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1
bj = /0 lj(ﬂ)dﬂ

the numerical solution at the endpoint of a subinterval can be written as

By defining

N
k _ ik —_ vk k
Xgp1 = X)) = X% — h Z(bj fj)'
j=1

It is the final goal of all computations done for a particular step & to obtain the value

x*  which is determined by the result x*~! = x* of the previous step and the coeffi-
s+1 s+1 0
cients flk, ,fsk.

These coefficients have to be determined by solving a (nonlinear) system of equations:
Equation (3.17a) has to hold at the collocation points t’l‘, ...,t*. Hence, the system of
equations defines a relationship between the values of the derivative of the numerical
solution at the collocation points given by the the unknowns f lk ..., f¥and the values

of the numerical solution at the collocation points Sc(tll‘), ey fc(t’s‘) which in turn also

depend on flk, ...,fsk.
Ci
a;; :/0 lj(ﬂ)dﬂ

the numerical solution X can conveniently be expressed at the collocation points:

By defining

N
X = 51k = xk — h z(a,,. f;c)
j=1

fori=1,...,s.

The following definitions are introduced for convenience:

k _ k

J7 = J(x;)
ok = 9H

! ox xzxf.c
BF = B(xF)

u; = u(tf)
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Then, the system of equations, which has to be solved at the k-th step, can be written
as
fl.k +Jl.ke§‘+Bl.kuf.‘ =0 fori=1,...,s. (3.20)

In the general case, every term of the above equation, except for u¥, depends on the

unknowns flk, e fsk.

By introducing the block vectors and matrices

7= [ )

J* = blockdiag(J%, ..., J5)

the system of equations (3.20) can be written as

fk + Jkek + BRUF = 0.

3.7.2 Gauss-Legendre collocation

Gauss-Legendre collocation methods use the roots of the shifted Legendre polynomial

%d(is((x(x_l))s>

as coefficients cy, ..., c;.

A s-stage Gauss-Legendre collocation method has accuracy order 2 s, i.e.

1 s
/ f(l()-i-hT)dT = Zbi f(t0+hci) + @(h2s+1).
0 i=1

The choice s = 1 yields the implicit midpoint rule which is second-order accurate.
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Gauss-Legendre collocation methods applied to port-Hamiltonian systems with quadratic

Hamiltonian are the only numerical integrators which yield an exact discrete energy
balance [47].



GENERIC

This chapter shall summarize some important aspects of the GENERIC approach to
nonequilibrium thermodynamics which was introduced in [9, 10]. The textbook [24]
explains the General Equation for the NonEquilibrium Reversible-Irreversible Coupling
(GENERIC) in greater detail.

The fundamental idea behind the GENERIC approach is the additive splitting of the
time evolution of a thermodynamical system into reversible and irreversible contri-
butions. If x € & describes the macroscopic state of a system then the time evolution
x is given by

X = Xpey T Xipy (4)

where X, is the reversible and x;,, is the irreversible contribution.

rev

Reversible processes are modeled by a Hamiltonian system and conserve both energy
and entropy. Irreversible processes are modeled by a gradient system. They conserve
energy and generate entropy.

The GENERIC framework can be defined using a Poisson bracket together with a dis-
sipation bracket. Alternatively, it can be defined as a state-space formalism using
(families of) linear operators. In either case, the “state space” is a smooth manifold
which of course includes the case of a linear space.

The literature about GENERIC focuses on distributed parameter systems and in par-
ticular (complex) fluids. The following section introduces the GENERIC framework
as a state-space formalism. To highlight the central thermodynamic aspects of the
GENERIC, the framework is introduced using a simple lumped parameter system as
an example. Section 4.2 touches upon the extension of the framework to open ther-
modynamical systems.
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4.1 Operator-GENERIC formulation

In the distributed-parameter setting, the state space is infinite-dimensional and con-
sequently various functional-analytical intricacies arise. Unfortunately, no attention

is paid to such details in this thesis. More information can be found in the preprint [43]
which also coined the term “Operator-GENERIC formulation” Here, a finite-dimensional
setting is assumed.

Let & > x be the smooth state manifold of an isolated thermodynamical system.

The GENERIC can be written as

x = J)[dE®)| + R(x)[dS(x)] . (4.2)

Xrev Xirr

The time evolution x € T is the sum of the reversible contribution %,., € T2 and

the irrevesible contribution x;, € TZ'. Further, E € C*(X) is the energy function
expressing the total energy in the system and S € C*(X) is the entropy function
expressing the total entropy in the system. The families of linear maps

J: XL - Hom(T; X, T.X)
x> J(x)

and R: 2 -» Hom(T;Z, T, Z)
x — R(x)

have to satisfy certain conditions which give physical meaning to Eq. (4.2).

For any fixed x € 2, the Poisson operator J(x): Ty 2 = T, 2 maps the differential

of the total energy dE(x) € T;Z to the reversible contribution x,., € T, 2. This
operator is skew-symmetric, i.e.
VXEXL 1 Ve eT;Z : J®)|a] + JT(x)|a] = 0T, X . (4.3)

Similarly, for any fixed x € &, the dissipation operator R(x): Ty 2 = T, maps
the differential of the total entropy dS(x) € T;Z to the irreversible contribution
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Xir € T, 2. This operator is symmetric and positive semi-definite, i.e.

VxeX : Va, fETIT - a(R(x)[ﬂ]) - a(RT(x)[ﬂ]> = ﬂ(R(x)[a]) (4.4)
a<R(x)[a]> > 0. (4.4b)

It can be said that the energy function ‘generates’ the Hamiltonian dynamics and that
the entropy function generates the irreverisble dynamics. Since the dissipation oper-
ator is positive semi-definite, irreversible contributions lead to an increase in entropy.

The irreversible contribution is sometimes called a ‘gradient system’.

The following two conditions express the thermodynamical nature of the reversible
and the irreversible contributions:

1. Any reversible contribution %,,, (generated by some energy function E) has to leave
the total entropy S invariant. This yields to the following degeneracy condition for the

Poisson operator:
VEeC®X): Vxed : dS(x)(fcrev> - dS(x)<J(x)[dE(x)]) 20 (45)

Since

(4.3) _

dS@(JWEEX]) = dE@(IT@[dS@]) € =B (J0[ds) ).

it holds that for all x € &, the linear operator J(x) must be defined in a way such that
the differential of S at x lies in its kernel.

2. Any irreversible contribution X, (generated by some entropy function .S) has to
leave the total energy E invariant. This yields to the following degeneracy condition
for the dissipation operator:

VS eC®X): VxeX : dE(x)<>*cm> _ dE(x)(R(x)[dS(x)]) 20 (4.6)
Since

dE@)(R[IS@]) = aSeo( KT [aE) ) (449 a5 R@[AEE) ).

it holds that for all x € &, the linear operator R(x) must be defined in way such that

the differential of E at x lies in its kernel.
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The GENERIC (4.2) and the conditions given in Egs. (4.3), (4.4a), (4.4b), (4.5) and (4.6)
together imply the following balance equations for E and S

The total energy E of an isolated system is conserved:

L = 4B () = dE@(J@REW]) + dE(R0[AS] )

~dE®(J@E®] ) +dS@)(R@[AE®] ) =0 (47)
— ——

. J
~~
=0

=0

The total entropy S of an isolated system is non-decreasing over time:

ds

T = dS(%) = dSe(JEEX] ) + dso( R@[dsw) )
= ~dE®(J@[S@]) + dS@(Rw[asw]) 20 (48)
N ——— N _
=0 >0
Ui (s1, v1(9) £ Us (52, 02(9)
5 q - :
- >

Fig. 4.1 A heat-conducting piston moving inside an isolated cyclinder.

Example 4.1 (heat conduction through a moving piston).

Figure 4.1shows a piston inside an adiabatically isolated cylinder of length / and cross-
sectional area A. The piston has mass m, wall thickness w, heat conductivity x and
linear momentum p. Its cross-sectional area is also assumed to be A. The volumes v,
and v, at each side of the piston are filled with an ideal gas of fixed mass m; and m,,

respectively. At all times, the gas within each volume is assumed to be at equilibrium.

It is assumed that the model comprises only three storage components, namely the
two lumped volumes filled with an ideal gas which has only internal energy and a
piston which seperates the two volumes and stores only kinetic energy. To keep the



4.1 Operator-GENERIC formulation 53

example simple, the kinetic energy of the gas as well as the internal energy of the

piston and the cylinder wall are neglected.

The volumes v, and v, of the compartments can be expressed as a function of the
cylinder’s position g, i.e.

v = (¢-5)4
v = (1-5-4q)4.

The entropies s; and s, are the thermal state variables for the two compartments. The
macroscopic state of the system can thus be expressed by

T 4
xz[qp 8 32] e X CcR".

The enery function is

EG) = 20 p + Uy(s1, 04(@) + Us(s, 02(a) (4.9)

where the thermodynamic potentials U; and U, are given according to Eq. (B.3) with
the fixed masses m; and m, taken into account. The differential of E (expressed in
matrix notation) is

oE oU; ,_\dvy |, Uy, \ov, |1 oU, oU T
o= R ROR L T )
T
= [(=m (51 01@) + m(s2 02@) ) A o) 61 (51, 01@) O(52, @)
(4.10)

Here, the functions 7z, and r, yield the (equilibrium) pressure and the functions 6,
and 6, yield the (equilibrium) temperature of the gas inside the two compartments,
see Egs. (B.4a) and (B.4b).

The entropy function is
Sx) = 51 + 5, (4.11)

and its differential (expressed in matrix notation) is

T
95 _ [0 01 1] . (4.12)
ox



54 GENERIC

The dynamics of the system can then be expressed in the form of Eq. (4.2) as

g 0 1 0 0][(m(x)—m((x)A4 00 0 0 170

; -100 0 v(x 00 0 0 0
"l = © + 10 0 42w (4.13)

Sl O O O O HI(X) a@](x) a 1

5 0 000 0,(x) 00 -a 218 1

2
H/—’x o ~ AN ~ J/ w -~ y 5
I e16)) R(x) ox

A . .
where a = —isa heat transfer coefficient.

In the above model, the heat transfer between the two compartments is the only irre-
versible effect. To extend the example, friction between the piston and the cyclinder
wall shall be included in the model. This irreversible process converts kinetic energy
of the piston into internal energy. Since the model does not consider the internal
energy of the piston and the cylinder wall, the simplest way of taking the friction into
account is by assuming that it increases the internal energy in each volume by the
same amount regardless of the direction in which the piston moves.

The dissipation operator R(x) in Eq. (4.13) models the irreversible heat conduction
through the piston and shall be renamed to R,(x). A further contribution R,(x) shall
model the friction effect and it shall hold that R(x) = R,(x) + R;(x). Both contribu-
tions must individually satisfy the conditions stated in Egs. (4.4a), (4.4b) and (4.6).

By assumption, the friction effect leads to a velocity-proportional force on the piston
given by —d v where d is the friction coefficient. The dissipated power d v reappears
as heat. It is assumed that half of this heat power is entering the first volume and
the other half is entering the second volume. The damping force —d v determines the
third and fourth column of the second row of the operator written in matrix notation.
Both entries are the same because it is assumed that the dissipated energy increases
the internal energy in each volume by the same ammount. The degeneracy condition
then determines the second column of this row. Further, the symmetry condition
determines the third and fourth row of the second column. Then the degeneracy
condition determines the third and fourth columns of the third and fourth row. This
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yields
[0 0 0 0 ]
1 1 1
0 3d(6,+6,) —3do —>dv
—5 D _1 -av
0 —Ldv 0 L1lgp
L 02 i
o

The GENERIC structure can be seen as a guide throughout the modeling process
which ensures that the balance equations are formulated in a thermodynamically con-

sistent manner.

4.2 Open GENERIC systems

To consider open thermodynamic systems, the GENERIC (4.2) has to be extended by a
boundary contribution which is defined by the boundary operator B(x) and the input

vector ug:
x = J[AE®)] + RX)[dS(x)] + B(x)[up] (4.15)

In [26], it is shown that distributed-parameter GENERIC systems can be considered
as open thermodynamic systems by using an approach sharing “the spirit of Stokes-
Dirac structures”. Stokes-Dirac structures were introduced in [18] to define distributed

parameter port-Hamiltonian systems.






GENERIC port-Hamiltonian systems

This chapter discusses port-Hamiltonian systems which can directly be related to
the GENERIC framework. Other approaches to modeling nonequilibrium thermo-
dynamical systems as (quasi) port-Hamiltonian systems use the total energy as the
Hamiltonian function, see Section 1.2.2. This entails the need for a modulating func-
tion leading to a quasi-Hamiltonian formulation [34]. In contrast, the class of port-
Hamiltonian systems which is introduced in this chapter uses the total exergy as the
Hamiltonian function. In Remark 3.12 it has been argued that the Hamiltonian func-
tion of systems which neglect thermal dynamics (isothermal systems) is indeed an
exergy function. Hence, it can be said that the approach to modeling thermodynam-
ical systems taken in this chapter fits well to the established theory of isothermal
port-Hamiltonian systems. This chapter is inspired by the preprint [42].

The dynamics of a GENERIC system are generated by its energy function E € C*(Z’)
and its entropy function S € C®(X’). These two functions can be combined into one
exergy function

H =E -0, € C*°X). (5.1)

where 0, € R* is a constant defining the reference temperature, see Eq. (2.7). The
choice of a fixed reference temperature leads to an exergy function for the system
which is considered as a state function. Its differential is

dH(x) = dE(x) — 67dS(x).
Further, for every x € 2 the dissipation operator R(x) is factorized according to
R(x) = 6, C(x) D(x) CT(x). (5.2)

For distributed parameter systems it may be physically meaningful to diagonalize

R(x). In this case, C and CT are spatial differential operators and D contains the
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transport coefficients, see [24, p. 67]. For lumped-parameter systems, like the system

of Example 4.1, it makes more sense to consider C and C" as identity operators.

In particular in view of Remark 3.12, the GERNERIC system Eq. (4.15) is closely related
to the irreversible port-Hamiltonian system

x J(x) B(x) Cx)| |[dH(x)
—yg| = | -BT(x) 0 0 ug
—YR -C'x) 0 0 ug

7 . ~ AN J
N(x) e

up = —D(x)yg
introduced in Section 3.6 since it holds that

x = J)[dE(x) — 63dS(x)| + B(x)[up] + C(x)|ug]

J(0)[dEx)| + B(x)[up] = (C(x) D)) [yg]

J)[dE®)] + Bx)[up] — (C(x) D(x)CT(x)) [dE(x) — 6,dS(x)]
J()[AdE)] + Bx)[up] + (6 C(x) D(x)CT(x))[dS(x)]
JO[AE®)] + Rx)[dS(x)] + B(x)[up] .

The family of linear maps N defines a (generalized) Dirac structure. The conditions
on J and R which are imposed by the GENERIC framework provide guidance for mod-
eling thermodynamic systems and in particular they ensure that for isolated systems
the total energy is conserved and the total entropy is non-decreasing, see Egs. (4.7)
and (4.8). This implies that for an isolated GENERIC port-Hamiltonian system, the to-
tal exergy is non-increasing. An open GENERIC port-Hamitonian system with bound-
ary ports defined through the boundary operator B(x) is passive with respect to the

output yp, i.e.
dH

a < (ug | yp)- (5:3)

Just like Eq. (3.15), this says that

stored power < supplied power

but here power clearly means rate of exergy exchange.
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Using this approach, it is possible to model irreversible thermodynamical systems as
port-Hamiltonian systems in a relatively straightforward way. In particular, it is not
necessary to adapt the existing theory. Only the physical meaning of the Hamiltonian
function needs to be rethought if the storage of internal energy is taken into account.
The exergy concept allows to describe the exchange of heat on an equal footing with
the exchange of work by measuring the value of the exchanged heat with respect to a

given reference temperature.

Even though the Hamiltonian function, the resulting efforts and the resistive relations
all depend on the reference temperature, the predections of the resulting model are
independent of the chosen reference temperature.

Example 5.1 (heat conduction through a moving piston).

This example shows a reformulation of Example 4.1 as a port-Hamiltonian system.
According to Egs. (4.9), (4.11) and (5.1), the Hamiltonian is defined as the exergy func-
tion

1 1
H(x) = 3PP+ Uy (s1. 01(@) — 0ysy + Us(sy, 02(@)) — 0y 52

where 6, € R* is the reference temperature. The differential of the exergy function

(in matrix notation) is

<7T2(Sza () — 7 (s, Ul(‘I))) A
oH , . v(p)
0x 91(51, Ul(q)) -6y
92(S2, Uz(CI)) )

The operator R,(x) is factorized by taking C and CT to be identity operators and
defining D, (x) = gi R, (x). The operator R;(x) is factorized in the same manner.
0

This leads to the port-Hamiltonian system

. 0H
X J 1 1 g(x)
v l=1-1 0 o0of| u (5-42)
_yd -1 0 O l/ld
7 . “ AN J
N e
ua = _Da(x) ya (54b)

ug = —Dy(x) yy (5.4¢)
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Hence, the reversible contribution to the time evolution is given by

%y = J% - [U(p) (71 (51 01@) = w52, 02@) ) 4 0 o]T

and the irreversible contribution is given by %;,. = u, + u; where

0, 0,
T

_ 1 do? 1 dov?
Ug = [0 do 9, 2 9, 2 ] .

It is important to note that the reference temperature 6, eventually canceled out.

exergy of volume 1

exergy of piston

exergy of volume 2

Fig. 5.1 Bond graph representation of a GENERIC port-Hamiltonian system: The ex-
ergy storage components are shown in blue. The underlying Dirac structure is rep-
resented by the green components. At these green components, the net exergy ex-
change rate is zero. The red components represent irreversible processes, namely heat
conduction and friction. The respective exergy destruction rate is written inside those
dissipative components.

The system comprises three interconnected exergy storage components, namely the
piston’s kinetic energy which is pure exergy and each compartment’s exergy which is
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less than the internal energy. The gas compartments are two-port components hav-
ing one port for the exchange of mechanical exergy (i.e. pressure-volume work) and
another port for the exchange of thermal exergy (i.e. heat). From this interconnection
perspective it is perhaps more natural to express the system state in terms of the five
exergy variables

T 5
xz[p S1 U; S 02] e cR.

The interconnection of the three storage components yields the holonomic constraint
v+ v, = Al —-w) (5-5)

relating the two state variables v, and v,. In the previously presented descriptions
of this example system, the constraint is eliminated by replacing the two variables v,
and v, with the single variable ¢. This corresponds to finding coordinates for the four-
dimensional constraint manifold itself. Figure 5.1 shows a bond graph representing
the model as a GENERIC PHS. The skew-symmetric map

[ -f1 i [ -A A1 11 e i
-/ A e
-f3 —-A e3
—f4 -1 ey
e b s (5.6)
—fs -1 e
-f7 -1 e;
- f3 1 1 eg
—fo -1 eg
L —fio 1 L -1 1L e |

defines the Dirac structure of this system. Zeros have been omitted for readability.
This map has a block-diagonal structure. The first block defines &, and expresses the
exchange of mechanical exergy between the piston, the two gas compartments and
the friction effect. The two remaining blocks define &, and 9. They express the
exchange of thermal exergy between the compartments, the heat conduction effect
and the friction effect. The flow variables related to the storage port define the time
evolution of the system state:

T

~s=ts=|n fs h K B (57)
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Since the system is isolated, all remaining flow variables are associated with the irre-
versible dynamics modeled by the red components. The component representing the
heat conduction effect is defined by

1
= - .8a
e 90+f6“(f9 f6) (5.8a)
1
eg = alfe—fo) . (5.8b)
° = ot /o (fo = /o)
It holds that
6,—-6, 06,-0
1 2
exergy des;;uction rate
The component representing the friction effect is defined by
ey = —d f4 (593)
1 1, .,
= ———d .9b
€7 9()+f72 f4 (59)
1 1
= dfy. (5.9¢)

e e —-—
07 0+ f10 2

It holds that

2
(eq | f4) + (e7 | f7) + (e1o | f10) = —90d70<0l+0i> <0.
T

. 7/

P
exergy destruction rate

At those dissipative components, the net outflow of exergy is always nonpositive. This
nonnegative net inflow is equal to the exergy which is destroyed by the respective
irreversible process. The exergy destruction rate may also be called ‘dissipated power'’.
In Fig. 5.1, the rate of exergy destruction associated to a particular irreversible process

is written on the corresponding red component.

Equations (5.5) to (5.9) form a system of Differential-Algebraic Equations (DAEs)
which can for instance be integrated by a Gauss-Legendre collocation method. By
requiring that not only the differential but also the algebraic equations hold at ev-
ery collocation point, it can be guaranteed that the discrete trajectory remains on the

four-dimensional constraint manifold. Simulation results are shown in Fig. 5.2.
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Fig. 5.2 Simulation results for the system shown in Fig. 5.1: Different pressure and
temperature values in the two compartments have been set as initial conditions. A
transient steers the system into its equilibrium state, thereby maximizing the total
entropy. A time step of one millisecond was used which in total corresponds to 800
steps. The fourth-order (s = 2) Gauss-Legendre collocation method was used to in-
tegrate the DAE system. The total energy E is conserved quite well (with a relative
error of 3.9 X 107%) even though the system is highly nonlinear. The constraint equa-
tion (5.5) is conserved up to machine precision.

A more realistic model of the physical system would include the exergy associated
to the piston’s internal energy. This would lead to another term in the Hamiltonian
function, namely Us(s;) — 6, s3. The modified example is shown as a bond graph

in Fig. 5.3.
Unfortunately, no simulation results for this modified case are included in the present
thesis since I could not find a suitable expression for the potential U; which should

approximately characterize the constitutive relations of internal energy storage for a

solid metal or some other relevant solid material. o

Example 5.2 (Carnot engine).
Figure 5.4 shows a bond graph representation of a hypothetical Carnot engine operat-

ing between two isothermal heat reservoirs, see Remark 2.5. The hot reservoir always
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exergy of volume 1

1
e = 0—3&(91 —03)

thermal exergy
of piston

kinetic exergy
of piston

e4=—du e =v
fa=v Si=-p

exergy of volume 2

Fig. 5.3 Bond graph representation of the modified example which also includes the
storage of thermal exergy inside the piston.

hot reservoir

] velocity
Carnot engine J

force

ambient reservoir

Fig. 5.4 Bond graph representation of a Carnot engine.

stays at the temperature 6, and acts like an infinitely large source of entropy. The
ambient reservoir always stays at the temperature 6, and acts like an infinitely large
sink of entropy. The ambient temperature 6, is used as the reference temperature of
the system which is necessary to define the exergy storage functions H;, and H,,. Con-
sequently, the ambient reservoir stores no exergy, i.e. H, = 0. Further, the pairing
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between effort and flow variable for the bond which connects the hot reservoir and

the engine is equal to

. 1 . .
(_Sh) = (eh_QO) e_hQin = NcCarnot Qin

aHh(Sh)
dsh

and hence equal to the exergy provided to the engine per unit of time. The pairing
for the bond which connects the engine and the ambient reservoir is equal to zero
because the Carnot engine rejects heat at the temperature 6,. This leads to the effort
variable being zero. The entropy flow through this bond is nonzero, though. The work
output of the engine is equal to the exergy intake since, due to its reversible nature,

no exergy is destroyed within the engine. o






Conclusion and future directions

6.1 Summary and discussion

This thesis is motivated by an urge to learn more about regenerative heat engines and
in particular thermoacoustic engines. The motivation is ultimately rooted in the hope
that technological advances and entrepreneurial initiative in this field will contribute
to mitigate problems related to pollution, scarcity of natural resources and anthro-
pogenic climate change. The future will tell how successful these devices will be in
serving humanity in a sustainable way. At the same time, we will have to find out to
what extent (optimization- and control-oriented) modeling of these systems will play
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a role in driving the desired developments.
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Fig. 6.1 According to an article which is part of the World Economic Forum Annual
meeting 2019 in Davos-Klosters, Switzerland, “Air conditioners alone could account
for up to 40% of the world’s remaining global carbon budget by 2050.” Image by
REUTERS/Vivek Prakash.


https://www.weforum.org/agenda/2019/01/why-keeping-ourselves-cool-doesnt-have-to-mean-heating-the-planet/
https://www.weforum.org/agenda/2019/01/why-keeping-ourselves-cool-doesnt-have-to-mean-heating-the-planet/
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So far, Stirling-cycle devices such as thermoacoustic engines are usually modeled in
the frequency domain based on linear acoustic wave equations which take heat trans-
fer and fluid viscosity into account. This approach is limited to stability analysis based
on the assumption of a sinusoidal steady state. In real systems, and in particular when
trying to push the frontier towards higher power-density and performance, the dy-
namics of these devices can become highly nonlinear. Furthermore, transient effects
can also play an important role in practice. This poses a demand for nonlinear time-
domain models. It is only natural to expect such models to be composable: A complex
system is split into subsystems which are interacting with each other. The modeling

framework of port-Hamiltonian systems seems to be well suited for this task.

Chapter 2 provides an introduction to some fundamental aspects of thermodynamics.
The following chapter first covers the basics for reversible lumped-parameter port-
Hamiltonian systems. Then, systems with irreversible dynamics are discussed also
from a thermodynamic perspective. This leads to the conclusion that for isothermal
systems the physical meaning of the Hamiltonian function is the total exergy, i.e. the
maximum amount of work which can theoretically be extracted from the system.
Port-Hamiltonian systems are naturally passive because their stucture ensures that
no exergy is created. This makes them attractive representations of complex physical
systems arising from network modeling and discretization of distributed-parameter
systems. The structural properties of port-Hamiltonian systems are not only bene-
ficial for accurate numerical computations but can also help for model generation,
model simplification, as well as optimization and control. The graphical modeling
language of bond graphs [2] which predates port-Hamiltonian systems theory [8] is
used in combination with simple examples to illustrate the main ideas. Chapter 3
also deals with structure-preserving time discretization which is used to present some

simulation results.

Chapter 4 introduces the most important aspects of the GENERIC framework [o,
10] which constitutes a geometric approach to modeling nonequilibrium thermo-
dynamic systems. Compared to port-Hamiltonian systems theory, this framework
is perhaps less suited for network modeling. The GENERIC framework was discov-
ered while studying the dynamics of complex fluids and therefore the literature is fo-
cused predominantly on isolated distributed-parameter systems. Later, an extension
to open GENERIC systems has been established in [26] using essentially the same
approach that is used for capturing boundary interaction in distributed-parameter
port-Hamiltonian systems.
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Chapter 5 presents the main contribution of this thesis which is to help clarifying
the relationship between the GENERIC framework and port-Hamiltonian sytems the-
ory. This connection has already been discussed in the preprint [42]. The article sug-
gests a straightforward way for representing GENERIC systems as port-Hamiltonian
systems. This is achieved by combining the energy and the entropy functions em-
ployed by the GENERIC framework into a single exergy function which serves as the
Hamiltonian function of the corresponding port-Hamiltonian system. This function
characterizes the constitutive nature of the system’s storage components. The Dirac
structure models the power-conserving interconnection of different aspects of the
system. Having the system’s total exergy as a Hamiltonian function implies that the
meaning of ‘power’ is ‘exergy exchange rate’. The name ‘GENERIC port-Hamiltonian
systems’ is used to refer to port-Hamiltonian systems which use the total exergy as
their Hamiltonian function and inherit basic structural properties of the GENERIC
framework. In particular, this means that the Dirac structure of a GENERIC port-
Hamiltonian system is defined in such a way that the reversible exchange of exergy
conserves both energy and entropy and therefore also exergy. In addition, the resistive
relations which are part of the definition of a GENERIC port-Hamiltonian system are
defined in a way that the irreversible exchange of exergy conserves energy, produces
entropy and therefore destroys some of the exchanged exergy. A lumped-parameter
GENERIC system which is already introduced as an example in Chapter 4 to illus-
trate the GENERIC approach is represented as a GENERIC port-Hamiltonian system.
Furthermore, it is shown how the graphical modeling language of bond graphs can be
adapted to represent GENERIC port-Hamiltonian systems. Simulation results suggest
that Gauss-Legendre collocation methods are well suited for the time-integration of
nonlinear GENERIC port-Hamiltonian systems. In particular, the total energy is con-
served well.

Simulations are carried out using a software implementation which automatically
turns the equations describing the port-Hamiltonian system into problem-specific
code and executes it. The SymPy library is used to represent equations as Python
code and to perform symbolic computations and code generation. The software is
available on my personal research website' where I also plan to post updates about

my future works in this field.

'https://MarkusLohmayer.github.io/research


https://MarkusLohmayer.github.io/research
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The present work just made a small step towards modeling Stirling-cycle devices as
port-Hamiltonian systems. In particular, modeling the Stirling engine shown in Fig. 1.1
as a GENERIC port-Hamiltonian system remains an unreached milestone.

6.2 Outlook

Future research will focus on modeling distributed-parameter systems and in partic-
ular on modeling a Navier-Stokes-Fourier fluid. Theory concerning this has already
been presented in [42, 43].

To model a regenerator component, the heat-exchange between the fluid and the solid
material has to be taken into account. Among other things, this requires finding an
expression for the internal energy of the solid material as a function of entropy. So
far, I have not found such thermodynamic potentials for relevant solid materials and
consequently I could not simulate the system shown in Fig. 5.3.

Once the formulation is completely worked out for a simple (one-dimensional) spa-
tial domain, a structure-preserving spatial discretization method, presumably using

mixed finite elements, needs to be implemented.

It will also be interesting to see how the bond graph language can be used to represent
the interconnection of (distributed-parameter) models and how such representations
can be used as input for code generation pipelines.

I hope that this thesis can serve as a stepping stone for future work following this
direction. I further hope that I can continue on this path. I also hope to find other
people who are interested in this topic. Plese feel free to reach out to me at any time
if you are!
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Mathematical background

This appendix shall give a bird’s eye view on some mathematical preliminaries. The
main goal is to build an intuitive understanding of core concepts in differential geom-
etry. To this end, the exposition shall focus on definitions. Proofs and remarks about
mathematical technicalities are entirely omitted.

Section A.6 is included as the last section even though it is not directly relevant for
this thesis. This material becomes particularly relevant when discussing distributed

parameter systems.

A much more thorough presentation of the material is given in the books [5] and [31].
Together with the “Lectures on the Geometric Anatomy of Theoretical Physics” ! given
by Dr. Frederic Schuller, these two books shall serve as references for this appendix.

A.1 Groups

Groups are an ubiquitous algebraic structure.

Definition A.1 (group).
A group (G, Q) is a set G together with a binary operation

. GXxG-G

that satisfies the group axioms

(i) closure:Va,beG: a®be G
(ii) associativity:Va,b,c€G: (a®@b)Oc=a®(bOc)
(iii) existence of a unique identity element: 3¢ € G: Ya€G: eQa=a

(iv) inverse elements:Vae G: 3a™': a ' 0a=e

'https://www.video.uni-erlangen.de/course/id/242


https://www.video.uni-erlangen.de/course/id/242
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A

Axioms (iii) and (iv) talk about a left-identity and left-inverse elements. Addition-
ally or alternatively, existence of a right-identity and right-inverse elements can be
demanded.

If a group (G, ©) further satisfies the commutativity propertyVa, b€ G: a®b=bOa
then the group is called an abelian group. In this case there is no distinction between
left- and right-identity and -inverse elements.

If + denotes the group operation, the inverse element of « is usually denoted by —a.

A group homomorphism is a map between two groups that respects the group struc-
ture:

Definition A.2 (group homomorphism).
Let (G, -) and (H, +) be two groups. Then a group homomorphism 2 : G - H isa
map for which it holds that

Vg, 8 €G: h(g-g)=h(g)+h(g).
A

In particular, a group homomorphism maps the identity element of G (denoted by 1)
to the identity element of H (denoted by 0), i.e. A(1) = 0 and it maps inverse elements
to inverse elements,i.e. Vg € G : h(g_l) = —h(g).

Example A.3 (symmetric group / permutation group).
Let M be a set with cardinality | M| = n. Then the symmetric group (or permutation
group) over M is the set

Sy = {n: M —> M | r is bijective}

(with cardinality n!) together with composition of these bijections as the group oper-
ation.

If M = {1, ..., n} then §,, is also denoted by §,,.

A transposition is a permutation that swaps exactly two elements. Every permutation
7 can be written as a combination of transpositions. If the number of transpositions is
odd then sgn(x) = —1 and if it is even then sgn(z) = +1. In fact, sgn: Sy, — {-1, +1}
is a group homeomorphism that maps a permutation group to the group ({-1, +1}, -)

(with neutral element +1). o
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A.2 Vector spaces

Since differentiation and integration are built on the concept of infinitesimal quanti-
ties, the mathematical description of nonlinear objects and effects can locally still be

accomplished using linear spaces and maps between them.

Vector spaces (sometimes also called linear spaces) require another underlying alge-
braic structure:

Definition A.4 (field).
An (algebraic) field (K, +, -) is a set K together with two maps

+: KXxK—->K
: KXK—> K

called addition and multiplication which have the following properties:

(i) (K, +)is an abelian group (with the identity element denoted by 0)
(ii) (K \ {0}, -) is an abelian group (with the identity element denoted by 1)
(iii) distributivity of - w.r.t. +:Va, b,c€ K: a-(b+c)=a-b+a-c

The most relevant example here is of course the field of real numbers (R, +, ).

A vector space is a slightly more complicated algebraic structure:

Definition A.5 (vector space).
A K-vector space (V, @, ©) over a field (K, +, -) is a set V' together with two maps

D VXV >V
©: KXV -V

called vector addition and scalar multiplication that satisfy the following axioms:
(i) (V, @) is an abelian group (where the identity element is called zero vector and
the inverse element of a € V' is denoted by —a)

(ii) compatibility of scalar multiplication ® with field multiplication -:
Vkl,kzeK: VUEV: (kl‘k2)®U=k1®(k2®U)
(iii) existence of a multiplicative identity: 31 € K: VveV: 10Qv=v
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(iv) distributivity of ® with respect to &:
VkEK: Yo, 0€V:ikO (@) =kov, ®kOuv,

(v) distributivity of ® with respect to. +:
Vk,ky€ K:YveV: (kj+k)Ov=k Ov@®k,0v

Definition A.6 (linear map).
Let (V, @, ©) and (W, H, [-]) be two K-vector spaces. Amap f: V — W is called
linear if it has the following properties:

(i) additivity: Yov,, vy € Vi f(v; ® vy) = f(v)) B f(vy)
(ii) homogeneity (of degree1): Vke K: Vv eV : f(kOv)=k[] f(v)

A

In the sequel, the symbol “~” above the arrow in “f : V = W” shall indicate the
linearity of the map f.

The linear maps between two linear spaces form again a linear space:

Definition A.7 (vector space homomorphisms).
Let (V, +, -) and (W, @, ©) be two K-vector spaces. The set of all linear maps

Hom(v, W) = {f: Vv = w |
together with the operations

B : Hom(V, W) x Hom(V, W) = Hom(V, W)

(f.e)—~ fHeg
where
fHg: VW
v f(V) @ gv)
and

[ : KxHom(V, W)= Hom(V, W)
(k, /)= k[1f
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where
kAf:VSW
v kO f(v)
is a K-vector space called the vector space homomorphisms from V' to W'. A

Definition A.8 (vector space endomorphisms).
The set of all linear maps from a vector space V to itself are called the endomorphisms
onV:

End(V) = Hom(V, V)

Definition A.g (vector space isomorphism).
A bijective linear map is called a vector space isomorphism. A

The vector space isomorphisms are the bijective homomorphisms and the structure-
preserving maps between vector spaces, i.e. they preserve the vector space structure.
Two K-vector spaces V' and W are called isomorphic if there exists a vector space

isomorphism between them. This is denoted by V' =,.. W

vec

The dual space of a K-vector space V is the K-vector space containing all K-valued
linear maps on V':

Definition A.10 (dual vector space).
The field (K, +, -) can itself be considered as a K-vector space. Then

V* = Hom(V,K),

i.e. the vector space of all linear functionals on V/, is called the dual vector space of V.

A
Elements of the dual space are often called covectors.
Definition A.11 (dual basis).
Let V' be a n-dimensional vector space with ordered basis {el, e en}. Then there
exists a unique ordered basis {el, e e”} of the dual space V* called the dual basis

such that
Vi,je{l,...,n}: ée) = &

1

where 5{ =1ifi=jand 5{ = 0ifi # j (Kronecker delta). A
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For finite-dimensional spaces it follows that dim(}V') = dim(V*) and V = V™.

Definition A.12 (orientation).

Let V be a n-dimensional vector space. Lete = {e|, ..., ¢,} and f = {f, ..., f,} be
two ordered bases of V. Then there exists a unique endomorphism A: V' = V for
which it holds that Vi € {1, ..., n} : A(e;) = f;.

The bases e and f are said to have the same orientation if det(4) > 0. Otherwise they
are said to have opposite orientations. Hence, there are two equivalence classes of
bases.

An orientation on V is the (arbitrary) assignment of +1 to one class and —1 to the
other. A

A.3 Tensors

Tensors are multi-linear maps related to a vector space and its dual space.

In differential geometry, this vector space is usually a tangent space on a manifold,
see Section A.5.3. This and the fact that the definition of a tensor does not ask for
a choice of basis makes a tensor a (coordinate-free) geometric object. In this sense,
tensors are much more than merely multidimensional arrays.

Definition A.13 (tensor).
Let V' be a K-vector space and let V* denote its dual space. Then a (p, ¢)-tensor ¢ on

V (contravariant of order p and covariant of order ¢) is a multilinear map

t: VEX - XVEXV XXV 5 K

' '
p copies q copies

A map is called multilinear if it is linear in each argument separately (with the other
arguments held constant).

The set of all (p, q)-tensors can be understood as a vector space:
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Definition A.14 (tensor space).

Let V be a vector space over a field (K, +, -) and let V* be its dual space. Then the set

T;V)=V®-QVRV*® - QV* (only notation)
pC(;[r)ies qC(;I(DieS
= {t: VX XVEXV XXV 5 K}
. 7 . ~~ 7
p copies q copies
equipped with the maps
@ :T,V)XT, (V) T)(V)
(t 1) > 1, ® 1
where
(tl @tz)(al, ceey ap, Uy, «ovy Uq) = tl(al, ceey ap, Uy «ovs Uq) + t2(0{1, ey ap, Uy, ...
and
O:KXT)(V)ST,(V)
(k, ) » kOt
where
(k@t)(al, ceey ap, Uy «ovy Uq) = k~t(0£1, vee s (Xp, Uy «ovs Uq)

forms a K-vector space called the (p, ¢)-tensor space on V.

Example A.15 (two tensor spaces).

1. TIO(V) =V* = {t: V= K} = Hom(V, K) is the dual space of V.

2. The space of (1, 1)-tensors on V is isomorphic to the endomorphisms on V'*, i.e.

T'V) = VeV = {t: V*xV1>K} = . End(V'").
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components basis

contravariant (vectors) up down

covariant (covectors) down up

Table A.1 placement of indices according to Einstein’s notation

The isomorphism is given by:

T!(V) = End(V'*) End(V*) = T\(V)
r—>m mme—t
where
m:V*=Sy* i VixV S K
a - ta, o) (a, v) = m(a)(v)

o
Definition A.16 (tensor product).
p p
Lett; € T, (V)and 1, € T, (V).
+ .
Then the tensor product t; ® 1, € T ;1 L ;; (V) is defined as
(tl ®1‘2)((11, ey apl, apl+], ceey ap1+p2, Uy, «ovy Uql’ Uql+], ceey Uq1+q2)
= tl(al, ey apl, U «ovy Uql) . tz(apl+1, ey ap1+p2, Uql+1, . Uq1+q2)

A

The multiplication operation - above is the field multiplication, i.e. the - in (K, +, -).

Remark A.17 (Einstein’s notation).
Indices are placed either up or down according to the type of quantity, cf. Table A.1.

Einstein’s summation convention mandates that the sum symbol is omitted for sums
over an index that appears twice (once as subscript and once as superscript) within a
term. A
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A.4 Topological spaces

A set can be equipped with a structure called topology turning the set into a so-called
topological space. This makes it possible to speak about neighborhoods of points and
to define what it means for a function to be continuous.

A topology O on a set M declares which subsets of M are the so-called open sets.
Any topology must contain the empty set and the entire set. It must further hold that
finite intersections and arbitrary unions of open sets are again open sets.

The power set (M) is the set of all possible subsets of M (including the empty set
@ and the entire set M itself).

Definition A.18 (topology and topological space).

Let M be some set. Then a choice ® C (M) is called a topology on M if
(i) geOCand M € O

(i) U,Veb = UnNV)eoO

(i) SCo6 = (US)eo

The pair (M, 0) is called a topological space. A

The standard topology on R” is induced by the Euclidian metric of the space. It is
generated by the open balls (with non-zero radius). This means that any open set (in
the standard topology) can be represented as the union of a (possibly infinite) set of
open balls.

Theorem A.19 (subspace topology).
Let (M, 0O) be a topological space. Let N C M. Then

Ol ={UNnN|Ue€0O}CPN)
N
is a (natural) topology on N called the subspace topology (induced from the topology
on M). A
A topology is the minimal structure that needs to be defined on a set to establish the

notion of continuity:

Definition A.20 (continuous map).
Let (M, Oy) and (N, Oy) be two topological spaces. Let ¢: M — N be a map.
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Then ¢ is called continuous if

VB e Oy : preimy(B) € Oy .

Hence,amap ¢p: M — N is continuous if the preimage
preimy(B) = {m € M | ¢(m) € B}

of any open set B € O, is open (with respect to 0,,).

Definition A.21 (homeomorphism).

Let (M, Oy) and (N, Oy ) be two topological spaces. Let ¢ : M — N be a bijection.

Then ¢ is called a homeomorphism if ¢ : M — N and ¢~': N - M are continuous.
A

Homeomorphisms are the structure-preserving maps between topological spaces, be-
cause they preserve topological properties. In particular, if ¢ : M — N is a homeo-
morphism it holds that U € 0,, is a neighborhood of p € M ifand only if $(U) € Oy
is a neighborhood of ¢(p) € N. Two topological spaces (M, 0,,) and (N, Oy) are
called homeomorphic if there exists a homeomorphism between them. This is de-
noted by M = N or more precisely (M, 0);) S0 (N, Oy).

=hom

A.5 Manifolds

A Manifold is a special kind of topological space: Every point of a n-manifold has
a neighborhood that is homeomorphic to the Euclidean space of dimension n. For
example, a sphere is a two-dimensional manifold because locally it looks like R? but

globally it is certainly not a linear space.

A.5.1 Topological manifolds

Topological manifolds are the simplest kind of manifolds.

Definition A.22 (topological manifold).
A paracompact Hausdorff topological space (M, 0) is called a n-dimensional topolog-
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ical real manifold if

Vpe M : (EI U € 0 with U 5 pand 3homeomorphismx: U — x(U) C [R”)

Definition A.23 (submanifold).
Let (M, O) be a topological manifold. Let N C M. Then (N , @| N) is called a sub-
manifold of (M, 0) if it is a manifold in its own right. A

Definition A.24 (bundle).

A bundle is a triple (E, =, M) (also denoted by E LM ) where E is a topological
manifold called the total space and M is also a topological manifold called the base
space. The projection z# : E — M is a surjective continuous map. For any p € M the
set E, = preim”({ p}) is called the fiber over p. A

y/a
A vector-bundle E — M is a special kind of bundle: For any two points on the base
space M, the corresponding fibers are isomorphic vector spaces. It can be imagined
that there is a vector space “attached” to every point on the base space. The tangent

bundle (cf. Section A.5.4) is an important example of a vector bundle.

Definition A.25 (section).
Let E = M be a bundle. Then a map o : M — E is called a section of the bundle if
mwoo =idy,. A

A section ¢ of a bundle E = M maps every point p € M to a point o(p) € E,.

If the bundle E = M is a vector bundle, then a section & maps every point p € M to

a vector o(p) in the vector space E b

Manifolds are geometric objects which can be defined independently from a certain
choice of coordinates. In fact, many different coordinate systems can coexist on one
manifold. A chart defines a local coordinate system for some part of a manifold:

Definition A.26 (chart).
Let (M, 0) be a n-dimensional topological manifold. Then a pair (U, x) of an open set
U € 0 and a homeomorphism x : U — x(U) C R" is called a chart of the manifold.

The component functions x' : U — R, p ~ proj;(x(p)) are called the coordinates of
the point p € U with respect to the chart (U, x). A
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A transition maps formalizes the idea of “patching together” two charts:

Definition A.27 (C°-compatibility of charts and transition maps).
Two charts (U, x) and (V, y) are called Co—compatible if either

DHUnNV=y
(i) UNV # @and yo x~! is continuous

1

The map y o x™" is called a coordinate change map or a transition map. A

Any two charts of a topological manifold are by definition C°-compatible because
composition of homeomorphisms yields a homeomorphism.

Remark.

From this it also follows that for example a curve y : R 2 | - M on a manifold M is
continuous at a point p € M iff. for some chart (U, x) with U > p it holds that x o y is
continuous as a map from R 2 [ 2 preim, (U) — x(U) C RAMM) A

An atlas is a collection of charts covering the entire manifold:

Definition A.28 (atlas).
A set & of charts such that

U=M
U.x)ed
is called an atlas of the manifold. A
Definition A.29 (C%-atlas).
An atlas whose charts are pairwise C°-compatible is called a C%-atlas. A

Again by definition, every atlas is a C’-atlas.

Definition A.30 (maximal C’-atlas).
A CP-atlas o is called maximal if any chart (U, x) which is C’-compatible with any
chart (V, y) € & is already contained in . A

A.5.2 Differentiable manifolds

Admittedly, definitions A.27 and A.29 are not too meaningful as such. But if we change

definitions A.27, A.29 and A 30 slightly by demanding that the transition maps yeox~!

between pairs of overlapping charts are not only continuous but k times or infinitely
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often differentiable, we obtain definitions for C¥- and C*-compatibility of charts and
consequently also definitions for a (maximal) C*- and C®-atlas. This way, differential
calculus can be “lifted” from RY™M) (i e. from the chart level) to a manifold M.

Definition A.31 (C*-manifold).
If (M, 0) is a topological manifold and & is a maximal C*-atlas then (M, 0, /) is a
C*-manifold. A

Remark A.32 (smooth manifold).

A result obtained by Whitney in 1936 shows that any maximal C*-atlas (k > 1) con-
tains a C*™-atlas and therefore can be uniquely turned into a C*-atlas by removing
charts. In this sense, it is not necessary to distinguish between differentiable mani-

folds and smooth manifolds. A

Remark A.33 (oriented manifold).

A differentiable manifold is called orientable if the determinant of the Jacobian matrix
of any chart transition map is always positive. The choice of a maximal atlas with this
property is called an orientation. A

The differentiability of a map between manifolds is defined on the chart level but the
definition is independent of the choice of a particular chart:

Definition A.34 (C*-map).

Let (M, Oy, dy;) and (N, Oy, oy ) be two C*-manifolds and let ¢ : M — N be
a map between them. Then ¢ is called k times differentiable at p € M if, for some
(U, x) € oy, withU > pand some some (V, y) € /5 with V' 3 ¢(p), the map yopox~!
is k times differentiable as a map from x(U) — y(V), see Fig. A.1. A

This definition rests on the fact that the composition of C*-maps yields a C*-map.

MDOU ¢ VCN

| g

Rdim(M) D x(U) y(v> C Rdim(N)

yogpox !

Fig. A.1 A differentiable map between manifolds is defined by “lifting” the concept of
differentiability from the chart representation to the manifold.

Remark A.35 (differentiable real-valued function).
Definition A.34 also includes the case of a differentiable function f: M — R: If
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N = R! then y is just the identity map on R! and hence f is k times differentiable at
a point p € M if for any chart (U, x) € o/,, with U > p it holds that
foxl: RIMM) 5 4 (U) - R is k times differentiable at the point x(p). A

Definition A.36 (C*-diffeomorphism).
If a map between two C*-manifolds ¢: M — N is bijective and both ¢ and ¢! are
C*-maps, then ¢ is called a C*-diffeomorphism. A

Diffeomorphisms are the structure-preserving maps between differentiable manifolds
because they preserve the differential structure. Two differentiable manifolds (M , O, A M)
and (N, Oy, dy) are called diffeomorphic if there exists a diffeomorphism between
them. Thisis denoted by M = ;¢ N or more precisely (M, Oy, 9y) Sqigr (N, Oy, Ay ).

A.5.3 Tangent and cotangent spaces

The most basic derivative that can be defined on a manifold is the the directional

derivative of a function.

Definition A.37 (space of smooth functions).
Let M be a smooth manifold. Then the set of smooth functions on M

C®M) = {f: M - R| fissmooth}

forms a R-vector space (C®, +, -) with vector addition and scalar multiplication de-
fined point-wise, i.e. for f, g € C*(M)and a € Rit holds that (f + g) (p) = f(p)+g(p)
and (a- f)(p) =a- f(p). A

In general, a manifold doesn’t have a vector space structure and hence defining the
derivative by subtracting two points (vectors) to form a difference quotient (like in
Euclidian space) makes no sense. Instead, the change of a function is evaluated along
a curve:

Definition A.38 (directional derivative operator).

Lety: R 2 1 - M be a smooth curve through some point p € M. Without loss of
generality, let y(0) = p. Then the directional derivative operator at p along y is the
linear map

X,,: C®(M) SR
fe(fer) 0
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where the prime denotes the derivative of the map from | C R to R. A

The directional derivative of a function f along y at p depends only on the curve’s
tangent vector at p (and obviously f itself). Therefore, the directional derivative op-
erator X, , is called the tangent vector to the curve y at p. It can be thought of as the
velocity vector of the curve y at p.

Due to the absence of a global linear structure on manifolds, the concept of curve for
measuring the change of a function is necessary to define the directional derivative
operator. But due to the local nature of the directional derivative operator, it can be
understood as an element of a vector space (called tangent space) which ‘belongs to’
a particular point p on the manifold.

Definition A.39 (tangent vector space).
The set of all directional derivative operators at a point p € M

T,M = {X,,|visasmooth curve with y(0) = p}
together with the maps

&: T,M x T,M = M
©: R x T,M = T,M

forms a R-vector space called the tangent space at p. Vector addition and scalar mul-
tiplication are defined point-wise, i.e. for f € C*(M)and a € R

(X,,® X5,) () = X, ,(f)+ X5,(f)
(a0 X,,)(f) =a-X,,(f)

A

Given two smooth curves y and 6 on M with y(0) = 5(0) = p, it can be shown that
there exists a smooth curve e with €(0) = p such that X, ,(f) + X;,(f) = X_,(f).
Hence, it can be shown that T,M is closed under & and ©.

The following theorem should not come as a surprise, given Definition A.22:

Theorem A.40 (dimension of the tangent space).

VpeM: dm(T,M) = dim(M)
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A
Remark A.q1 (chart-induced basis).
Any tangent vector X € T,M can be represented as
X =X ‘)i
o0x »
The components X I ..., x4mM) e R encode an infinitesimal displacement (i.e. the

direction and magnitude of a tangent vector). The change of a function can then be
evaluated along this tangent. The maps

0

| 1 C®(M) SR
ox!

p

with 1 <i < dim(M) form a basis of T,M. This basis is induced from a chart(U, x)
with p € U: For some f € C®(M) it holds that

9 = (2L = 0,(fox!
ax[‘p(f) = (55/) @ = (£ ox7) ()

where 9; denotes the i-th partial derivative of the map from RY4™M) to R, A
For every fixed function f € C*(M), the map

TPM SR
X X(f)
is a linear functional® on the tangent space. These functionals are elements of the
so-called cotangent space:

Definition A.42 (cotangent space).
Let M be a smooth manifold. The cotangent space T,y M of M at the point p € M is
the dual space of the tangent space of M at p,i.e. Ty M = (T,M)". A

For dim(M) < o it holds that dim(T, M) = dim(T,M) = dim(M) and T, M =,.. T,M.

The differential of a function f at point p is a covector (or 1-form) ‘living’ in the cotan-
gent space T, M

*In linear algebra, elements of the dual space (i.e. linear maps from the ‘primal’ space to its field)
are called functionals.
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Definition A.43 (differential).
At every point p € M there exists a R-linear map (differential operator)

d,: C®(M) 1>TP*M
fed,f

yielding a linear functional d,,f called the differential of f at p. It is defined by

(d,f)(X) = X(/f)
forany X € T,M. A

The basis of T; M is also induced from a chart (U, x) with U > p: The basis covectors
are the differentials of the component functions x/ : U — R, p + proj,(x(p)), i.e.

{dpxl, I | xdim(M)}

p

forms a basis of T,y M . In fact, this is also the dual basis of (7, M )*:
Fori, j € {1, ..., dim(T,M)}:

d x/ i = i
P\ oxi , ox!

Remark A.44 (nonrigorous metaphor).

) = 0,(x o x™") (x(p)) = &/
p

If one would imagine to draw on the manifold the local coordinate system which is
assigned by some chart (U, x) with U > p, then dpxj could be interpreted as the “den-
sity of ticks” on the j-th coordinate axis at point p (i.e. the number of ticks between
two points on the manifold). In contrast, the components g; € R of the differential
d,f = g;d,x/ can be interpreted as the “density of level curves” when moving along
the j-th coordinate axis at point p (i.e. the number of crossed level curves when mov-
ing between two ticks). A

A.5.4 Tangent bundle and vector fields

A manifold M together with all its tangent spaces {TPM | p € M} can be turned into
a vector bundle (with base space M):

Definition A.45 (tangent bundle).
Let M be a smooth manifold. Then the tangent bundle T M of M is the disjoint union
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of all tangent spaces:

™ = | | T,M = | {(p.X)| X eT,M}
PEM PEM

The bundle projection is a smooth map defined as

7. TM - M
XPp
where p € M is the point for which X € T,M. A

The tangent bundle 7'M is a smooth manifold of dimension 2 dim(M) since a smooth
atlas 9/, of T M can be constructed from a given smooth atlas </,, of M:
For (U, x) € &, the corresponding chart in o/, is given by (preim,(U), y) with

y: preim (U) — y(preim”(U)) C R2dim(M)

X <x1(7r(X)), L xEmOD (7x)), X, Xdim(M)>.

where X!, ..., X49mM) 3re the components of X with respect to the basis of T, xyM >
X (which is induced by the same chart). It can be shown that any two charts in o/,
are C*-compatible.

A vector field on a manifold M assigns to each point p € M a tangent vector X € T,M:

Definition A.46 (vector field).

Let M be a smooth manifold and let TM = M be its tangent bundle. Then a vector
field is a smooth section of T M. A

The set of all vector fields is denoted by

I(TM) ={c: M—>TM|rnoc=idy} .

This set has a structure that is similar but not quite like a vector space: It is a
C*®(M)-module (if addition and multiplication operations are defined accordingly).

A module (over a ring) is essentially the same kind of structure as a vector space (over
a field). What makes a module different from a vector space is merely its underly-
ing ring structure: In contrast to a field, a ring (R, +, -) does not have the property
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that (R \ {0}, ) is an abelian group. The multiplication operation is only required to
be associative and to distribute over the addition operation. In case the multiplica-
tion operation is commutative, the ring is called a commutative ring. If there exists a
unique neutral element with respect to multiplication, the ring is called a unital ring.
Further, if there exists an inverse element for every element in the ring, the ring is
called a division ring.

Hence, (C®(M), +, -) with + and - defined point-wise is a ring. Due to its point-wise
definition, - inherits the commutative property of multiplication on R making this a
commutative ring. The function in C*(M) that takes the value 1 everywhere on M
makes this a unital ring. But since there exists no inverse for functions that take the
value 0 at some point on M this is not a division ring.

So, (F(TM ), D, @) is a C*®(M)-module with addition defined as

®: I(TM)xT(TM) - T(T M)

(Ul, 02) =0, Do,
and multiplication defined as

O: C°M)XI'(TM) - T(TM)
(f,oym fov

where

Vpe M: (v @ v)p) = vi(p) + vy(p)
VpeM: (foup) = f(p)-vlp)

with + and - from the tangent vector spaces (T,M, +, -).

Remark.

An R-module is only guaranteed to have a basis if R is a division ring.

Since C*®(M) is not a division ring, ['(T' M) might not have a basis. This is related
to the hairy ball theorem which states that there exists no nonvanishing continuous
tangent vector field on even-dimensional spheres. According to Wikipedia, it is in

particular not possible to comb the hair on a coconut. A
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A.5.5 Cotangent bundle and tensor fields

Similar to the construction of the tangent bundle T'M, the cotangent bundle T* M can
be constructed. Both TM and T*M are smooth manifolds of dimension 2 dim(M).

The set of smooth sections on the cotangent bundle I'(T* M) can similarly be turned
into a C*®(M)-module.

This way, the concept of tensors (defined on a vector space) can be extended to the
concept of tensor fields (defined on a manifold):

Definition A.47 (tensor field).
A (p, g)-tensor field  on a smooth manifold M is a C*(M )-multilinear map

t: T(T*M) X - X T(T*M)XT(T M) X -+ x (T M) = C®(M)

' '
p copies q copies

A.6 Differential forms

Differential forms are a particular class of tensor fields:

Definition A.48 (differential k-form).
For 0 < k < n =dim(M), a (differential) k-form w is a (0, k)-tensor field that is totally

antisymmetric, i.e.
VX], ’Xk S F(TM),V” S Sk a)(Xl, ey Xk) = Sgn(ﬂ) . a)(Xﬂ'(l)’ ey Xﬂ'(k)) .
A

In particular, if two adjacent arguments (vector fields) are swapped then the k-form
o changes its sign. The anti-symmetric nature of a differential k-form encodes the

orientation of a k-dimensional volume or density.

The set of all k-forms on a manifold M is denoted by Q*(M). This set has the struc-
ture of a C*(M)-module. Consequently, the sum of two k-forms is a k-form and the
product of a smooth function and a k-form again is a k-form.

The 0-forms are by convention the smooth functions, i.e. Q%(M) = C®(M) and the
1-forms are the covector fields, i.e. Q'(M) = [(T* M).
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A.6.1 Exterior product

Remark (product of two tensor fields on a manifold).

The tensor product can be extended in a straightforward manner: Instead of turning a
(1> 1)-tensor and a (p,, g, )-tensor into a (p; + p,, q; + g, )-tensor, it can be defined
toturna (p;, q;)-tensor fieldand a (p,, ¢,)-tensor field intoa (p; + p,, q; + g, )-tensor
field by applying Definition A.16 point-wise. A

Higher-dimensional forms can be built from lower-dimensional ones by means of the
exterior product:

Definition A.49 (exterior product).
The exterior product is the alternating bilinear map

A QF(M) x QL(M) = QF (M)

(a, )= aAp
defined by
1
(aAB) (X1 s Xpy) = P ; sgn(7) (@ ® B) (Xziys - s X))
TES|41

The exterior product is the alternating version of the tensor product:
For a € Q¥(M) and g € Q/(M) it holds that

anf==D""Bra.

In particular, for w € Q!(M) it follows that w Aw = 0. Two linearly dependent 1-forms
cannot yield a nonvanishing 2-form (just like to linearly dependent vectors cannot

span a nonvanishing surface (2-volume)).
Further, the exterior product is distributive with respect to addition of k-forms.
A.6.2 Exterior derivative

Similarly to the tensor product, the R-linear map d,: C*(M) = T, M can be ex-

tended: Instead of turning a C*(M)-function f into a covector d,f € T, M at some
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specific point p € M, it can be defined to map f to a covector field df € I'(T* M) by
applying Definition A.43 point-wise:

d: QM) = Qlm)
f=df (A1)
defined as (df)p) 1 =d,f

This derivative operator is just one member of a family of differential operators
dk: QF(M) = QK (M.

Usually, all members of this family are denoted just by d.

Definition A.50 (exterior derivative).
The exterior derivative of a k-form @ € Q¥(M) is defined as the unique R-linear map

d: QM) = QR (M)
satisfying the following properties:
(i) d is an anti-derivation (of degree 1 w.r.t. A): For w, € Q¥(M) and w, € Q'(M) it
holds that d“ "/ (w; A @) = d“(@y) A w; + (1) 0, Ad' (@)
(ii) For f € Q°(M), d’ is defined in (A.1).

(iii) For any w, € Q*(M) it holds that d"*' (d*w; ) = 0,i.e.ded = 0.

(iv) dis alocal operator: For any open neighborhood U € 0,; and any k-form
w € Q(M) it holds that d(w)|, =d(w],).

The exterior derivative is R-linear but not C*(M)-linear. Instead the Leibnitz rule
d(f -®) = f -dw+df A gholds for all f € C®(M) and w € QX(M), see property (i).

Remark (relationship to vector calculus).

Comparing exterior calculus with vector calculus in 3 dimensions, the following rela-
tionships exists: According to property (ii), d° is related to the gradient of a function.
Further, d' is related to the curl of a vector field and d? is related to the divergence of
a vector field, see A.60.

Property (iii) corresponds to the two facts that the curl of the gradient of any scalar

field is zero and that the divergence of the curl of any vector field is zero. A
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A.6.3 Integration

One very important feature of differential forms is their intimate relationship with
integration on oriented manifolds: A k-form a € Q*(M) can be integrated over a
k-dimensional submanifold of M.

Since the exterior derivative is related to (and unifies) the gradient, curl and diver-
gence operators from vector calculus, it is not surprising that there exists an integral
theorem in exterior calculus that unifies the integral theorems of vector calculus:

Theorem A.51 (Stokes’ theorem).
Let M be a smooth oriented (k+1)-dimensional manifold with smooth (k-dimensional)
boundary M. Then for any k-form w, € Q*(M) it holds that

/ dka)k = / tr(a)k) .
M oM

A

This theorem clearly shows a duality between exterior differentiation and restriction
to the boundary (expressed by the trace operator).

A.6.4 Interior product and Lie derivative

The exterior derivative increases the degree of a form. In contrast, the interior product
(or interior derivative or contraction) decreases the degree of a form:

Definition A.52 (interior product).
Let M be a differentiable manifold and let X € I'(T M) be a vector field on M. Then
the interior product of the vector field X and a k-form @, € QK(M) is the R-linear
map
. Qk ~ k—1
Iy QK(M) = QM)

defined by

VXI, cesy Xk—l EF(TM): (lXa)k)(Xl, cee s Xk—l) =a)k(X, Xl’ ey Xk—l) .
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The interior product is an anti-derivation (of degree —1 w.r.t. A):
For w;, € Q¥(M) and w, € Q'(M) it holds that

Ix(w, ANwy) = (lxa)k) Ao, + (=DF o, A (lXa),) :

The Lie derivative of a differential form can be defined with the exterior derivative
and the interior product (expressing a certain duality between the two operations):

Theorem A.53 (Cartan homotopy formula).
Let M be a differentiable manifold. Let X € I'(T M) be a vector field on M and let
w € QX(M) be a k-form on M. Then the Lie derivative of @ w.r.t. X is given as

Zyw = iydo + d(lXa)) .

A.6.5 Riemannian metric and related isomorphisms

The exterior product, the exterior derivative and hence also the Lie derivative are in-

dependent of a metric having merely a ‘topological character’.

A Riemannian metric basically defines an inner product on every tangent space, thereby
making it possible to speak for example about the length of and angles between tan-
gent vectors.

Definition A.54 (Riemannian metric).

Let M be a differentiable manifold. Further, let g: (TM) x (TM) = C%®(M) be
a (0, 2)-tensor field on M that is everywhere symmetric and positive-definite. This
means that the following holds:

and

VPEM,VXI, XZEF(TM) g(Xl’ Xz) =g(X2, Xl)

p

p

gXy, X)) =20 and g(Xy, X))

p

p

=0
P

Then g is called a Riemannian metric on M and (M, g) is called a Riemannian mani-
fold. A
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Given a chart (U, x) with U > p, the set { £| Y ees ai } defines a chart-induced
tlp nlp
basis of T, M. The components of the metric tensor at point p € M (w.r.t. this basis)

are hence given by
0

, —
p Oxj

8ij

_ g<i )
» 0x; o,

and the metric tensor at point p is given (in terms of the basis of the cotangent space
T, M which is the dual basis of the basis of T,M ) as

dx!
p

® dx’
p

gl = &ij

p

p

The canonical choice of a Riemannian metric for (n-dimensional submanifolds of) R”

is the Euclidian metric g;; |p = §,;, i.e. the extension of the Euclidian inner product on

ijr
every tangent space to the entire manifold.

The metric induces an isomorphism between 1-forms (covector-fields) and vector
fields:

Definition A.55 (musical isomorphism).

Let (M, g) be a Riemannian manifold and let X,Y € I'(T M) be two vector fields.

The C*®(M)-linear map b turns the vector field X into a 1-form X b

b+ T(TM) = Q'(M)
X X

defined through xX'v)= g(X,Y).

In coordinates this corresponds to lowering the index of the components of X: Let x
be (local) coordinates and let g;; be the corresponding representation of the metric
tensor. Then it holds that

i 0 i 0

X'(Y) = g(X.Y) = g<X =Y ﬁ) = g, XY = g, X' dx(Y).

Hence, g;; X' is the coordinate representation of X b,
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Conversely, the map f turns a 1-form  into a vector field o*:

f: QM) S T(TM)

a)|—>a)ﬁ

defined through w = (a)ﬁ>b.

In coordinates this corresponds to raising the index of the components of w:
Let ' be the components of @*. Then it holds that

. . b o
o= w;dx = (a)’aii> = g;; o' dx’/

; -1 _ . .
Hence, o' = (g;;) ®; = g w; is the coordinate representation of ot A

A volume form on a manifold M is a nowhere vanishing top-dimensional form, i.e. a
form of degree n = dim(M). A volume form exists if and only if the manifold is ori-
entable. If y; € Q"(M) is a volume form, then so is y, = f p; for any nonvanishing
f € Q%M). A Riemannian metric makes one such volume form the natural choice:

Definition A.56 (Riemannian volume form).

Every oriented Riemannian manifold (M, g) hasa natural volume form u, € QUMM (pry,
Let (U, x) with U > p be a chart defining local coordinates around p € M. Because M

is oriented, the chart-induced basis of T, M is positively oriented. The volume form u
at p is then given as

A

In the Euclidian case, the determinant of the matrix of the components of the metric
tensor is always 1 and the natural volume form is '“g|p =dx! A... AdX".

A Riemannian volume form g, on a Riemannian manifold (M, g) makes it possible to
determine the volume of M according to the metric g:

Vol(M) = / He
M
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If a function f € Q°(M) represents a volumetric density, like for example a mass

density, then it can be integrated on M to yield the total mass

m=/f/\ﬂg=/fﬂg~
M M

The volume form u, serves as a measure for integrating functions (0-forms) on Rie-

mannian manifolds.

Hence, there exists an isomorphism between 0-forms and n-forms. This isompor-
phism is expressed by the Hodge star operator:

*1 = p,
*p, =1

In fact, the Hodge star expresses more generally an isomorphism between k-forms
and n — k-forms:

Definition A.57 (Hodge star operator).
Let (M, g) be a n-dimensional Riemannian manifold and let y, be the corresponding

Riemannian volume form. Then the Hodge star operator is the C*(M)-linear map

QK (M) = Q" k(M)

o= ka.
The Hodge dual of a is the unique n — k-form xa which satisfies
Vo e QM) : oA *a = (w, a)g Mo

where (-, -), : Q¥ (M) x QK(M) = C®(M) is an inner product between k-forms in-
duced by the Riemannian metric in the following way: For @ = w; A ... A @, and

a=a;A... Ny
(0, a), = det [g(co?, aﬁ)] = det [g7 (w;, @))]
A
The symmetry of the inner product yields the following property of the Hodge star:

Va, e QFM): a A%p = p A *a



98 Mathematical background

It further holds that for « € Q¥(M)
*xka = (=K=gy

Example A.58 (Hodge star and 3-dimensional Euclidian space).
For the particularly simple case where M is (a 3-dimensional submanifold of)
3-dimensional Euclidian space with coordinates x, the Hodge star operator yields the

following:
*1 = dx! Adx? Adx® *(dxl/\dxz/\dx3) =1
*dx! = dx? A dx? *(dx2 A dx3) = dx!
*dx? = dx3 Adx! *(dx3 /\dxl) = dx?
*dx? = dx! A dx? *(dxl A dxz) = dx’

Remark A.59 (distributivity and linearity).

The Hodge star operator does not distribute with respect to the exterior product.
Hence, for some a € Q¥(M) and g € Q' (M) in general x(a A f) # *a A xf. But
for f € Q°(M) and a« € Q¥(M) the following holds since x is a C*°(M)-linear opera-
tor: x(f Aa) = f A *a. A

Remark A.60 (gradient, curl, divergence).

Using the musical isomorphism and the Hodge star operator, the vector calculus op-
erators gradient, curl and divergence can all be expressed with the exterior derivative:
Let ([R3, g) be a Riemannian manifold with the Euclidian metric. Then for a smooth
function f € C®(R?) and vector fields X, Y € I'(T'R?) it holds that

Vf = (d(’f)ﬁ
VX = (x(ax)
V.Y = xd’ <*Yb>

The vector field X corresponds to a 1-form, whereas Y naturally corresponds to a
2-form, cf. Fig. A.2. A

Theorem A.61 (interior product and Hodge star operator).
Let M be a n-dimensional smooth manifold. Further, let X € I'(T M) be a smooth
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0 R} L 'R L 2R L Q3(R?) - 0
W W w
/ X’ xY?

Fig. A.2 De Rham complex for 3-dimensional Euclidian space

vector field on M and let « € QX(M) be a k-form on M. Then the interior product
between X and a can be expressed with the Hodge star operator in the following way:

Iya = (=)= 5 (*aAX")

A proof'is given in [20, p. 79].






Ideal gas

Equilibrium thermodynamics postulates the existence of a fundamental equation. In
practice however, it may be hard to obtain an expression for a particular system. For
relatively simple model such as the monatomic ideal gas, a fundamental equation can
be obtained analytically on be basis of statistical mechanics.

B.1 Sackur-Tetrode equation

The Sackur-Tetrode equation’ is a fundamental equation in entropic representation.
According to this model, the entropy s of a monatomic ideal gas which has internal

energy u, occupies a volume v and comprises of n particles with atomic mass m, is

given as
v\ (u\3
s = S, v, n) = an1n<<;> <;> > + kgnc (B.1a)
with w
5 3 Tm,
=243 ( ) B.
Cq 5 + 5 n 3h2 ( lb)

Here k5 = 1.380649 x 10723 JK~! is Boltzmann’s constant
and h = 6.626070 15 x 10734 J s is Planck’s constant.

For sufficiently high temperatures, this model can be used in engineering applica-
tions to describe the behavior of monatomic gases. For example, noble gases such as
Helium or Argon are stable as monatomic molecules.

'see eg. [33] which also references the original publications
g- 133 g p
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B.2 Internal energy as a thermodynamic potential

Equation (B.1a) can be solved for u to obtain the fundametal equation

1
S\ 3 2 2
u=U(,uv, n = (%) exp<§i—§cl>
B
(B.2)

Sometimes it is more convenient to use the mass m = m, n instead of the number of

particles n as a state variable. Equation (B.2) can then be written as

5 _8 5\ 3
u=U(,v,m = %e_i h*m,> <%> exp(%%%) (B.3)
B

According to Eq. (2.3), the thermodynamic equilibrium temperature is
1 -3 -3 im\3 2m, s
O(s,v,m) = —e 3 —m,’ <—> exp(———), (B.ga)
2 v
the thermodynamic equilibrium pressure is
1 2 2 -4 m % 2m, s
a(s,v,m) = —e 3h"m,’ <—> exp(———) (B.4b)
2n v 3k
and the chemical potential per unit mass is

s 2 _8 _1
u(s, v, m) = 4—e_§ Z—ma3 (SkBm—Zm s) (muz) 3 exp(z%%>. (B.4¢0)

B.3 Internal energy density

Equation (B.3) can be turned into a local thermodynamic potential of the form
u = U(s, m) where u is the internal energy density, s is the entropy density and m is
the mass density.
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According to Eq. (2.9) and Eq. (B.3) it holds that
5 — 5
u=U(,m = i{,e_§ h>m,> m3 exp(z&i>. (B.5)
47[ 3 kB m
The intensive quantities are then given according to Eq. (2.10) as
5 p2 3 o
(s, m) = —e 3 h—ma m3 exp(— Pa i) (B.6a)
2 kB 3 kB m
5 1,2 _
u(s, m) = Loe §h—ma3 (SkBm—Zmas)m 3 exp<2&i> (B.6b)
47 B 3kpm
—= 5
(s, m) = Le 3h®>m,> m3 exp(2 P i) (B.6¢)
3kpm
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